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Preface

The Erlangen program provides a fundamental point of view on the place of trans-
formation groups in mathematics and physics. Felix Klein wrote the program, but
Sophus Lie also contributed to its formulation, and his writings are probably the best
example of how this program is used in mathematics. The present book gives the first
modern historical and comprehensive treatment of the scope, applications and impact
of the Erlangen program in geometry and physics and the roles played by Lie and
Klein in its formulation and development. The book is also intended as an introduc-
tion to the works and visions of these two mathematicians. It addresses the question
of what is geometry, how are its various facets connected with each other, and how
are geometry and group theory involved in physics. Besides Lie and Klein, the names
of Bernhard Riemann, Henri Poincaré, Hermann Weyl, Élie Cartan, Emmy Noether
and other major mathematicians appear at several places in this volume.

A conference was held at the University of Strasbourg in September 2012, as
the 90th meeting of the periodic Encounter between Mathematicians and Theoretical
Physicists, whose subject was the same as the title of this book. The book does
not faithfully reflect the talks given at the conference, which were generally more
specialized. Indeed, our plan was to have a book interesting for a wide audience and
we asked the potential authors to provide surveys and not technical reports.

We would like to thank Manfred Karbe for his encouragement and advice, and
Hubert Goenner and Catherine Meusburger for valuable comments. We also thank
Goenner, Meusburger and Arnfinn Laudal for sending photographs that we use in this
book.

This work was supported in part by the French program ANR Finsler, by the
GEAR network of the National Science Foundation (GEometric structures And Rep-
resentation varieties) and by a stay of the two editors at the Erwin Schrödinger Insti-
tute for Mathematical Physics (Vienna).

Lizhen Ji and Athanase Papadopoulos
Ann Arbor and Strasbourg, March 2015
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Introduction

The Erlangen program is a perspective on geometry through invariants of the auto-
morphism group of a space. The original reference to this program is a paper by Felix
Klein which is usually presented as the exclusive historical document in this matter.
Even though Klein’s viewpoint was generally accepted by the mathematical commu-
nity, its re-interpretation in the light of modern geometries, and especially of modern
theories of physics, is central today. There are no books on the modern developments
of this program. Our book is one modest step towards this goal.

The history of the Erlangen program is intricate. Klein wrote this program, but
Sophus Lie made a very substantial contribution, in promoting and popularizing the
ideas it contains. The work of Lie on group actions and his emphasis on their impor-
tance were certainly more decisive than Klein’s contribution. This is why Lie’s name
comes first in the title of the present volume. Another major figure in this story is
Poincaré, and his role in highlighting the importance of group actions is also critical.

Thus, groups and group actions are at the center of our discussion. But their
importance in mathematics had already been crucial before the Erlangen program
was formulated.

From its early beginning in questions related to solutions of algebraic equations,
group theory is merged with geometry and topology. In fact, group actions existed
and were important before mathematicians gave them a name, even though the for-
malization of the notion of a group and its systematic use in the language of geometry
took place in the 19th century. If we consider group theory and transformation groups
as an abstraction of the notion of symmetry, then we can say that the presence and
importance of this notion in the sciences and in the arts was realized in ancient times.

Today, the notion of group is omnipresent in mathematics and, in fact, if we want
to name one single concept which runs through the broad field of mathematics, it
is the notion of group. Among groups, Lie groups play a central role. Besides
their mathematical beauty, Lie groups have many applications both inside and out-
side mathematics. They are a combination of algebra, geometry and topology.

Besides groups, our subject includes geometry.
Unlike the word “group” which, in mathematics has a definite significance, the

word “geometry” is not frozen. It has several meanings, and all of them (even the
most recent ones) can be encompassed by the modern interpretation of Klein’s idea.
In the first version of Klein’s Erlangen program, the main geometries that are em-
phasized are projective geometry and the three constant curvature geometries (Eu-
clidean, hyperbolic and spherical), which are considered there, like affine geometry,
as part of projective geometry. This is due to the fact that the transformation groups
of all these geometries can be viewed as restrictions to subgroups of the transfor-
mation group of projective geometry. After these first examples of group actions in
geometry, the stress shifted to Lie transformation groups, and it gradually included
many new notions, like Riemannian manifolds, and more generally spaces equipped
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with affine connections. There is a wealth of geometries which can be described by
transformation groups in the spirit of the Erlangen program. Several of these ge-
ometries were studied by Klein and Lie; among them we can mention Minkowski
geometry, complex geometry, contact geometry and symplectic geometry. In modern
geometry, besides the transformations of classical geometry which take the form of
motions, isometries, etc., new notions of transformations and maps between spaces
arose. Today, there is a wealth of new geometries that can be described by trans-
formation groups in the spirit of the Erlangen program, including modern algebraic
geometry where, according to Grothendieck’s approach, the notion of morphism is
more important than the notion of space.1 As a concrete example of this fact, one can
compare the Grothendieck–Riemann–Roch theorem with the Hirzebruch–Riemann–
Roch. The former, which concerns morphisms, is much stronger than the latter, which
concerns spaces.

Besides Lie and Klein, several other mathematicians must be mentioned in this
venture. Lie created Lie theory, but others’ contributions are also immense. About
two decades before Klein wrote his Erlangen program, Riemann had introduced new
geometries, namely, in his inaugural lecture, Über die Hypothesen, welche der Geo-
metrie zu Grunde liegen (On the hypotheses which lie at the bases of geometry)
(1854). These geometries, in which groups intervene at the level of infinitesimal
transformations, are encompassed by the program. Poincaré, all across his work,
highlighted the importance of groups. In his article on the Future of mathematics2, he
wrote: “Among the words that exerted the most beneficial influence, I will point out
the words group and invariant. They made us foresee the very essence of mathemat-
ical reasoning. They showed us that in numerous cases the ancient mathematicians
considered groups without knowing it, and how, after thinking that they were far away
from each other, they suddenly ended up close together without understanding why.”
Poincaré stressed several times the importance of the ideas of Lie in the theory of
group transformations. In his analysis of his own works,3 Poincaré declares: “Like
Lie, I believe that the notion, more or less unconscious, of a continuous group is the
unique logical basis of our geometry.” Killing, É. Cartan, Weyl, Chevalley and many
others refined the structures of Lie theory and they developed its global aspects and
applications to homogeneous spaces. The generalization of the Erlangen program
to these new spaces uses the notions of connections and gauge groups, which were

1See A. Grothendieck, Proceedings of the International Congress of Mathematicians, 14–21 August 1958,
Edinburgh, ed. J.A. Todd, Cambridge University Press, p. 103–118. In that talk, Grothendieck sketched his
theory of cohomology of schemes.

2H. Poincaré, L’Avenir des mathématiques, Revue générale des sciences pures et appliquées 19 (1908)
p. 930–939. [Parmi les mots qui ont exercé la plus heureuse influence, je signalerai ceux de groupe et d’invariant.
Ils nous ont fait apercevoir l’essence de bien des raisonnements mathématiques ; ils nous ont montré dans com-
bien de cas les anciens mathématiciens considéraient des groupes sans le savoir, et comment, se croyant bien
éloignés les uns des autres, ils se trouvaient tout à coup rapprochés sans comprendre pourquoi.]

3Analyse de ses travaux scientifiques, par Henri Poincaré. Acta Mathematica, 38 (1921), p. 3–135. [Comme
Lie, je crois que la notion plus ou moins inconsciente de groupe continu est la seule base logique de notre
géométrie]; p. 127. There are many similar quotes in Poincaré’s works.
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closely linked to new developments in physics, in particular, in electromagnetism,
phenomena related to light, and Einstein’s theory of general relativity.

Today, instead of the word “geometry” we often use the expression “geometric
structure”, and there is a wealth of geometric structures which can be described by
transformation groups in the spirit of the Erlangen program. We mention in particular
the notion of .G;X/ structure introduced by Charles Ehresmann in the 1930s, which
is of paramount importance. Here X is a homogeneous space and G a Lie group
acting transitively on G. A .G;X/ structure on a manifold M is then an atlas whose
charts are inX and whose coordinate changes are restrictions of elements ofG acting
on X . Ehresmann formulated the notions of developing map and of holonomy trans-
formations, which are basic objects in the study of these structures and their moduli
spaces. .G;X/ structures have several variants and they have been developed and
adapted to various settings by Haefliger, Kuiper, Benzécri, Thurston, Goldman and
others to cover new structures, including foliations and singular spaces. The most
spectacular advancement in this domain is certainly Thurston’s vision of the eight ge-
ometries in dimension three, his formulation of the geometrization conjecture and the
work around it, which culminated in the proof of the Poincaré conjecture by Perel-
man.

We talked about mathematics, but the Erlangen program also encompasses physics.
In fact, geometry is closely related to physics, and symmetry is essential in modern
physics. Klein himself investigated the role of groups in physics, when he stressed
the concept of geometric invariants in his description of Einstein’s theories of special
and general relativity, in particular by showing the importance of the Lorentz group,
and also in his work on the conservation laws of energy and momentum in general
relativity. Another milestone that led to conceptual clarifications and made it possible
to systematically exploit the notion of symmetry in physics was E. Noether’s work
that related symmetries of physical systems to conserved quantities.

In conclusion, the central questions that are behind the present volume are:

� What is geometry?

� What is the relation between geometry and physics?

� How are groups used in physics, especially in contemporary physics?

Let us now describe briefly the content of this volume.
Chapters 1 and 2, written by Lizhen Ji, are introductions to the lives and works on

Lie and Klein. Even though Klein was a major mathematician, surprisingly enough,
there is no systematic English biography of him. The author’s aim is to fill this gap to
a certain extent. Besides providing convenient short biographies of Lie and Klein, the
author wishes to convince the reader of the importance of their works, especially those
which are in close relation with the Erlangen program, and also to show how close
the two men were in their ideas and characters. They both learned from each other
and they had a profound influence on each other. This closeness, their ambitiousness,
the competition among them and their disputes for priority of some discoveries were
altogether the reasons that made them split after years of collaboration and friend-
ship. The conflict between them is interesting and not so well known. The author
describes this conflict, also mentions the difficulties that these two men encountered
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in their professional lives and in their relations with other mathematicians. Both of
them experienced nervous breakdowns.4 The chapter on Lie also contains an out-
line of his important theories as well as statements of some of his most significant
theorems. In particular, the author puts forward in modern language and comments
on three fundamental theorems of Lie. Concerning Klein, it is more difficult to pick
out individual theorems, because Klein is known for having transmitted ideas rather
than specific results. The author explains how Klein greatly influenced people and
the world around him through his lectures and conversations, his books, the journals
he edited, and he also recalls his crucial influence in shaping up the university of
Göttingen to be the world’s most important mathematics center. In these surveys, the
author also mentions several mathematicians who were closely related in some way
or another to Lie and Klein, among them Hilbert, Hausdorff, Engel, Plücker, Sylow,
Schwarz and Poincaré. The chapter on Lie also reviews other aspects of Lie’s work
besides Lie groups.

Chapter 3, by Jeremy Gray, is a historical commentary on the Erlangen program.
The author starts by a short summary of the program manifesto and on the circum-
stances of its writing, mentioning the influence of several mathematicians, and the
importance of the ideas that originate from projective geometry (specially those of
von Staudt). He then brings up the question of the impact of this program on the
views of several mathematicians, comparing the opinions of Birkhoff and Bennet and
of Hawkins.

In Chapter 4, Hubert Goenner presents a critical discussion of the general impact
and of the limitations of the Erlangen program in physics. He starts by recalling
that the influence of the Erlangen program in physics was greatly motivated by the
geometrization of special relativity by H. Minkowski, in which the Lorentz group
appears as one of the main objects of interest, but he stresses the fact that the no-
tion of field defined on a geometry – and not the notion of geometry itself – is then
the central element. He comments on the relation of Lie transformations with theo-
ries of conservation laws and the relations of the Erlangen program with symplectic
geometry, analytical mechanics, statistical physics, quantum field theories, general
relativity, Yang–Mills theory and supergravity. The paper has a special section where
the author discusses supersymmetry. In a final section, the author mentions several
generalizations of the notion of Lie algebra.

In Chapter 5, Norbert A’Campo and Athanase Papadopoulos comment on the two
famous papers of Klein, Über die sogenannte Nicht-Euklidische Geometrie (On the
so-called non-Euclidean geometries), I and II. The two papers were written respec-
tively one year and a few months before the Erlangen program, and they contain in
essence the main ideas of this program. We recall that the 19th century saw the birth
of non-Euclidean geometry by Lobachevsky, Bolyai and Gauss, and at the same time,
the development of projective geometry by Poncelet, Plücker, von Staudt and others,
and also of conformal geometry by Liouville and others. Groups made the first link
between all these geometries, and also between geometry and algebra. Klein, in the

4Klein’s nervous breakdown was probably due to overwork and exhaustion, caused in part by his rude compe-
tition with Poincaré on Fuchsian functions, whereas Lie’s nervous breakdown was the consequence of a chronic
illness, pernicious anemia, related to a lack in vitamin B12, which at that time was incurable.



Introduction xv

papers cited above, gives models of the three constant-curvature geometries (hyper-
bolic, Euclidean and spherical) in the setting of projective geometry. He defines the
distance functions in each of these geometries by fixing a conic (the “conic at infin-
ity”) and taking a constant multiple of the logarithm of the cross ratio of four points:
the given two points and the two intersection points of the line joining them with the
conic at infinity. The hyperbolic and spherical geometries are obtained by using real
and complex conics respectively, and Euclidean geometry by using a degenerate one.
The authors in Chapter 5 comment on these two important papers of Klein and they
display relations with works of other mathematicians, including Cayley, Beltrami,
Poincaré and the founders of projective geometry.

Klein’s interaction with Lie in their formative years partly motivated Lie to de-
velop Lie’s version of Galois theory of differential equations and hence of Lie trans-
formation theory.5 In fact, a major motivation for Lie for the introduction of Lie
groups was to understand differential equations. This subject is treated in Chapter 6
of this volume. The author, Alexandre Vinogradov, starts by observing that Lie initi-
ated his work by transporting the Galois theory of the solvability of algebraic equa-
tions to the setting of differential equations. He explains that the major contribution
of Lie in this setting is the idea that symmetries of differential equations are the basic
elements in the search for their solutions. One may recall here that Galois approached
the problem of solvability of polynomial equations through a study of the symmetries
of their roots. This is based on the simple observation that the coefficients of a poly-
nomial may be expressed in terms of the symmetric functions of their roots, and that
a permutation of the roots does not change the coefficients of the polynomial. In the
case of differential equations, one can naively define the symmetry group to be the
group of diffeomorphisms which preserve the space of solutions, but it is not clear
how such a notion can be used. There is a differential Galois theory which is parallel
to the Galois theory of polynomial equations. In the differential theory, the question
“what are the symmetries of a (linear or nonlinear, partial or ordinary) differential
equation?” is considered as the central question. Chapter 6 also contains reviews of
the notions of jets and jet spaces and other constructions to explain the right setup for
formulating the question of symmetry, with the goal of providing a uniform frame-
work for the study of nonlinear partial differential equations. The author is critical
of the widely held view that each nonlinear partial differential equation arising from
geometry or physics is special and often requires its own development. He believes
that the general approach based on symmetry is the right one.

The author mentions developments of these ideas that were originally formulated
by Lie and Klein in works of E. Noether, Bäcklund, É. Cartan, Ehresmann and others.
A lot of questions in this domain remain open, and this chapter will certainly give
the reader a new perspective on the geometric theory of nonlinear partial differential
equations.

In Chapter 7, Charles Frances surveys the modern developments of geometric
structures on manifolds in the lineage of Klein and Lie. The guiding idea in this

5Lie has had a course at Oslo by Sylow on Galois and Abel theory before he meets Klein, but it is clear that
Klein also brought some of his knowledge to Lie.
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chapter is the following question: When is the automorphism group of a geometric
structure a Lie group, and what can we say about the structure of such a Lie group?

The author considers the concept of Klein geometry, that is, a homogeneous space
acted upon by a Lie group, and a generalization of this notion, leading to the con-
cept of a Cartan geometry. (Cartan used the expression espace généralisé.) Besides
the classical geometries, like constant curvature spaces (Euclidean, Lobachevsky and
spherical) as well as projective geometry which unifies them, the notion of Cartan ge-
ometry includes several differential-geometric structures. These notions are defined
using fiber bundles and connections. They describe spaces of variable curvature and
they also lead to pseudo-Riemannian manifolds, conformal structures of type .p; q/,
affine connections, CR structures, and the so-called parabolic geometries. The author
presents a series of important results on this subject, starting with the theorem of My-
ers and Steenrod (1939) saying that the isometry group of any Riemannian manifold
is a Lie group, giving a bound on its dimension, and furthermore, it says that this
group is compact if the manifold is compact. This result gave rise to an abundance
of developments and generalizations. The author also explains in what sense pseudo-
Riemannian manifolds, affine connections and conformal structures in dimensions
� 3 are rigid, symplectic manifolds are not rigid, and complex manifolds are of an
intermediate type.

Thus, two general important questions are addressed in this survey:

� What are the possible continuous groups that are the automorphism groups of
a geometry on a compact manifold?

� What is the influence of the automorphism group of a structure on the topology
or the diffeomorphism type of the underlying manifold?

Several examples and recent results are given concerning Cartan geometries and in
particular pseudo-Riemannian conformal structures.

Chapter 8, by Norbert A’Campo and Athanase Papadopoulos, concern transitional
geometry. This is a family of geometries which makes a continuous transition be-
tween hyperbolic and spherical geometry, passing through Euclidean geometry. The
space of transitional geometry is a fiber space over the interval Œ�1; 1�where the fiber
above each point t is a space of constant curvature t2 if t > 0 and of constant curva-
ture �t2 if t > 0. The fibers are examples of Klein geometries in the sense defined
in Chapter 7. The elements of each geometry are defined group-theoretically, in the
spirit of Klein’s Erlangen program. Points, lines, triangles, trigonometric formulae
and other geometric properties transit continuously between the various geometries.

In Chapter 9, by Athanase Papadopoulos and Sumio Yamada, the authors intro-
duce a notion of cross ratio which is proper to each of the three geometries: Euclidean,
spherical and hyperbolic. This highlights the relation between projective geometry
and these geometries. This is in the spirit of Klein’s view of the three constant cur-
vature geometries as part of projective geometry, which is the subject of Chapter 5 of
the present volume.

Chapter 10, by Yuri Suris, concerns the Erlangen program in the setting of dis-
crete differential geometry. This is a subject which recently emerged, whose aim is
to develop a theory which is the discrete analogue of classical differential geometry.
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It includes discrete versions of the differential geometry of curves and surfaces but
also higher-dimensional analogues. There are discrete notions of line, curve, plane,
volume, curvature, contact elements, etc. There is a unifying transformation group
approach in discrete differential geometry, where the discrete analogues of the clas-
sical objects of geometry become invariants of the respective transformation groups.
Several classical geometries survive in the discrete setting, and the author shows that
there is a discrete analogue of the fact shown by Klein that the transformation groups
of several geometries are subgroups of the projective transformation group, namely,
the subgroup preserving a quadric.

Examples of discrete differential geometric geometries reviewed in this chapter
include discrete line geometry and discrete line congruence, quadrics, Plücker line
geometry, Lie sphere geometry, Laguerre geometry and Möbius geometry. Important
notions such as curvature line parametrized surfaces, principal contact element nets,
discrete Ribeaucour transformations, circular nets and conical nets are discussed. The
general underlying idea is that the notion of transformation group survives in the dis-
cretization process. Like in the continuous case, the transformation group approach is
at the same time a unifying approach, and it is also related to the question of “multi-
dimensional consistency” of the geometry, which says roughly that a 4D consistency
implies consistency in all higher dimensions. The two principles – the transforma-
tion group principle and consistency principle – are the two guiding principles in this
chapter.

Chapter 11 by Catherine Meusburger is an illustration of the application of Klein’s
ideas in physics, and the main example studied is that of three-dimensional gravity,
that is, Einstein’s general relativity theory6 with one time and two space variables.
In three-dimensions, Einstein’s general relativity can be described in terms of cer-
tain domains of dependence in thee-dimensional Minkowski, de Sitter and anti de
Sitter space, which are homogeneous spaces. After a summary of the geometry of
spacetimes and a description of the gauge invariant phase spaces of these theories,
the author discusses the question of quantization of gravity and its relation to Klein’s
ideas of characterizing geometry by groups.

Besides presenting the geometrical and group-theoretical aspects of three-dimen-
sional gravity, the author mentions other facets of symmetry in physics, some of them
related to moduli spaces of flat connections and to quantum groups.

Chapter 12, by Jean-Bernard Zuber, is also on groups that appear in physics, as
group invariants associated to a geometry. Several physical fields are mentioned,
including crystallography, piezzoelectricity, general relativity, Yang–Mills theory,
quantum field theories, particle physics, the physics of strong interactions, electro-
magnetism, sigma-models, integrable systems, superalgebras and infinite-dimensional
algebras. We see again the work of Emmy Noether on group invariance principles
in variational problems. Representation theory entered into physics through quan-
tum mechanics, and the modern theory of quantum group is a by-product. The au-
thor comments on Noether’s celebrated paper which she presented at the occasion of
Klein’s academic Jubilee. It contains two of her theorems on conservation laws.

6We recall by the way that Galileo’s relativity theory is at the origin of many of the twentieth century theories.
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Today, groups are omnipresent in physics, and as Zuber puts it: “To look for
a group invariance whenever a new pattern is observed has become a second nature
for particle physicists”.

We hope that the various chapters of this volume will give to the reader a clear
idea of how group theory, geometry and physics are related to each other, the Erlangen
program being a major unifying element in this relation.

Lizhen Ji and Athanase Papadopoulos
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Sophus Lie, a giant in mathematics

Lizhen Ji
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1 Introduction

There are very few mathematicians and physicists who have not heard of Lie groups
or Lie algebras and made use of them in some way or another. If we treat discrete
or finite groups as special (or degenerate, zero-dimensional) Lie groups, then almost
every subject in mathematics uses Lie groups. As H. Poincaré told Lie [25] in October
1882, “all of mathematics is a matter of groups.” It is clear that the importance of
groups comes from their actions. For a list of topics of group actions, see [17].

Lie theory was the creation of Sophus Lie, and Lie is most famous for it. But Lie’s
work is broader than this. What else did Lie achieve besides his work in Lie theory?
This might not be so well known. The differential geometer S. S. Chern wrote in 1992
that “Lie was a great mathematician even without Lie groups” [7]. What did and can
Chern mean? We will attempt to give a summary of some major contributions of Lie
in �6.

One purpose of this chapter is to give a glimpse of Lie’s mathematical life by
recording several things which I have read about Lie and his work. Therefore, it is
short and emphasizes only a few things about his mathematics and life. For a fairly de-
tailed account of his life (but not his mathematics), see the full length biography [27].

We also provide some details about the unfortunate conflict between Lie and Klein
and the famous quote from Lie’s preface to the third volume of his books on trans-
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formation groups, which is usually only quoted without explaining the context. The
fruitful collaboration between Engel and Lie and the publication of Lie’s collected
works are also mentioned.

We hope that this chapter will be interesting and instructive to the reader of this
book and might serve as a brief introduction to the work and life of Lie discussed in
this book.

2 Some general comments on Lie and his impact

It is known that Lie’s main work is concerned with understanding how continuous
transformation groups provide an organizing principle for different areas of math-
ematics, including geometry, mechanics, and partial differential equations. But it
might not be well known that Lie’s collected works consist of 7 large volumes of the
total number of pages about 5600. (We should keep in mind that a substantial por-
tion of these pages are commentaries on his papers written by the editors. In spite
of this, Lie’s output was still enormous.) Probably it is also helpful to keep in mind
that Lie started to do mathematics at the age of 26 and passed away at 57. Besides
many papers, he wrote multiple books, which total over several thousands of pages.
According to Lie, only a part of his ideas had been put down into written form. In an
autobiographic note [9, p. 1], Lie wrote:

My life is actually quite incomprehensible to me. As a young man, I had no idea
that I was blessed with originality, Then, as a 26-year-old, I suddenly realized that
I could create. I read a little and began to produce. In the years 1869–1874, I had
a lot of ideas which, in the course of time, I have developed only very imperfectly.

In particular, it was group theory and its great importance for the differential
equations which interested me. But publication in this area went woefully slow. I
could not structure it properly, and I was always afraid of making mistakes. Not the
small inessential mistakes . . . No, it was the deep-rooted errors I feared. I am glad
that my group theory in its present state does not contain any fundamental errors.

Lie was a highly original and technically powerful mathematician. The recog-
nition of the idea of Lie groups (or transformation groups) took time. In 1870s, he
wrote in a letter [26, p. XVIII]:

If I only knew how to get the mathematicians interested in transformation groups
and their applications to differential equations. I am certain, absolutely certain in
my case, that these theories in the future will be recognized as fundamental. I want
to form such an impression now, since for one thing, I could then achieve ten times
as much.

In 1890, Lie was confident and wrote that he strongly believed that his work would
stand through all times, and in the years to come, it would be more and more appre-
ciated by the mathematical world.
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Eduard Study was a privatdozent (lecturer) in Leipzig when Lie held the chair in
geometry there. In 1924, the mature Eduard Study summarized Lie as follows [26,
p. 24]:

Sophus Lie had the shortcomings of an autodidact, but he was also one of the most
brilliant mathematicians who ever lived. He possessed something which is not found
very often and which is now becoming even rarer, and he possessed it in abundance:
creative imagination. Coming generations will learn to appreciate this visionary’s
mind better than the present generation, who can only appreciate the mathemati-
cians’ sharp intellect. The all-encompassing scope of this man’s vision, which,
above all, demands recognition, is nearly completely lost. But, the coming gen-
eration [. . . ] will understand the importance of the theory of transformation groups
and ensure the scientific status that this magnificent work deserves.

What Lie studied are infinitesimal Lie groups, or essentially Lie algebras. Given
what H. Weyl and É. Cartan contributed to the global theory of Lie groups starting
around the middle of 1920s and hence made Lie groups one of the most basic and
essential objects in modern (or contemporary) mathematics, one must marvel at the
above visionary evaluation of Lie’s work by Study. For a fairly detailed overview of
the historical development of Lie groups with particular emphasis on the works of
Lie, Killing, É. Cartan and Weyl, see the book [14].

Two months after Lie died, a biography of him appeared in the American Mathe-
matical Monthly [12]. It was written by George Bruce Halsted, an active mathematics
educator and a mathematician at the University of Texas at Austin, who taught famous
mathematicians like R. L. Moore and L. E. Dickson. Reading it more than one hun-
dred years later, his strong statement might sound a bit surprising but is more justified
than before, “[. . . ] the greatest mathematician in the world, Sophus Lie, died [. . . ]
His work is cut short; his influence, his fame, will broaden, will tower from day to
day.”

Probably a more accurate evaluation of Lie was given by Engel in a memorial
speech on Lie [9, p. 24] in 1899:

If the capacity for discovery is the true measure of a mathematician’s greatness, then
Sophus Lie must be ranked among the foremost mathematicians of all time. Only
extremely few have opened up so many vast areas for mathematical research and
created such rich and wide-ranging methods as he [. . . ] In addition to a capacity
for discovery, we expect a mathematician to posses a penetrating mind, and Lie was
really an exceptionally gifted mathematician [. . . ] His efforts were based on tackling
problems which are important, but solvable, and it often happened that he was able
to solve problems which had withstood the efforts of other eminent mathematicians.

In this sense, Lie was a giant for his deep and original contribution to mathematics,
and is famous not for other reasons. (One can easily think of several mathematicians,
without naming them, who are famous for various things besides mathematics). Inci-
dentally, he was also a giant in the physical sense. There are some vivid descriptions
of Lie by people such as É. Cartan [1, p. 7], Engel [27, p. 312], and his physics
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colleague Ostwald at Leipzig [27, p. 396]. See also [27, p. 3]. For some interest-
ing discussions on the relations between giants and scientists, see [11, pp. 163–164,
p. 184] and [22, pp. 9–13].

3 A glimpse of Lie’s early academic life

Lie was born on December 17, 1842. His father, Johann Herman Lie, was a Lutheran
minister. He was the youngest of the six children of the family. Lie first attended
school in the town of Moss in South Eastern Norway and on the eastern side of the
Oslo Fjord. In 1857 he entered Nissen’s Private Latin School in Christiania, which
became Oslo in 1925. At that time, he decided to pursue a military career, but his poor
eyesight made this impossible, and he entered University of Christiania to pursue
a more academic life.

During his university time, Lie studied science in a broad sense. He took math-
ematics courses and attended lectures by teachers of high quality. For example, he
attended lectures by Sylow in 1862.1

Though Lie studied with some good mathematicians and did well in most courses,
on his graduation in 1865, he did not show any special ability for mathematics or any
particular liking for it. Lie could not decide what subject to pursue and he gave
some private lessons and also volunteered some lectures for a student union while
trying to make his decision. He knew he wanted an academic career and thought for
a while that astronomy might be the right topic. He also learnt some mechanics, and
wondered about botany, zoology or physics. Lie reached the not-so-tender age of 26
in 1868 and was still not sure what he should pursue as a career. But this year was
a big turning point for him.

In June 1868, the Tenth Meeting of Scandinavian Natural Sciences was held in
Christiania. It attracted 368 participants. Lie attended many lectures and was par-
ticularly influenced by the lecture of a former student of the great French geometer
Michel Chasles, which referred to works of Chasles, Möbius, and Plücker.

It seems that the approaching season, the autumn of 1868, became one long con-
tinuing period of work for Sophus Lie, with his frequent borrowing of books from the
library. In addition to Chasles, Möbius and Plücker, Lie discovered the Frenchman
Poncelet, the Englishman Hamilton, and the Italian Cremona, as well as others who
had made important contributions to algebraic and analytic geometry.

Lie plowed through many volumes of the leading mathematical journals from
Paris and Berlin, and in the Science Students Association he gave several lectures
during the spring of 1869 on what he called his “Theory of the imaginaries”, and
on how information on real geometric objects could be transferred to his “imaginary
objects.”

1Ludwig Sylow (1832–1918) was Norwegian, like Lie. He is now famous and remembered for the Sylow
subgroups. At that time, he was not on the permanent staff of the university of Christiania, but he was substitut-
ing for a regular faculty member and taught a course. In this course, he explained Abel’s and Galois’ work on
algebraic equations. But it seems that Lie did not understand or remember the content of this course, and it was
Klein who re-explained these theories to him and made a huge impact on Lie’s mathematical life.
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Sophus Lie wrote a paper on his discovery. The paper was four pages long and it
was published at his own expenses.2 After this paper was translated into German, it
was published in the leading mathematics journal of the time, Crelle’s Journal.3 With
this paper, he applied to the Collegium for a travel grant and received it. Then he left
for Berlin in September 1869 and begun his glorious and productive mathematical
career.

There were several significant events in Berlin for Lie on this trip. He met Felix
Klein and they immediately became good friends. They shared common interests
and common geometric approaches, and their influence on each other was immense.
Without this destined (or chance) encounter, Lie and Klein might not have been the
people we know.

Lie also impressed Kummer by solving problems which Kummer was working
on. This gave him confidence in his own power and originality. According to Lie’s
letter to his boyfriend [26, p. XII]:

Today I had a triumph which I am sure you will be interested to hear about. Professor
Kummer suggested that we test our powers on a discussion of all line congruences of
the 3rd degree. Fortunately, a couple of months ago, I had already solved a problem
which was in a way special of the above, but was nevertheless much more general.
. . . I regard this as a confirmation of my good scientific insight that I, from the very
first, understood the value of findings. That I have shown both energy and capability
in connection with my findings; that I know.

In the summer of 1970, Lie and Klein visited Paris and met several important
people such as Jordan and Darboux. The interaction with Jordan and Jordan’s new
book on groups had a huge influence on both of them. This book by Jordan contained
more than an exposition of Galois theory and can be considered as a comprehensive
discussion of how groups were used in all subjects up to that point. For Klein and Lie,
it was an eye opener. Besides learning Galois theory, they started to realize the basic
and unifying role groups would play in geometry and other parts of mathematics. In
some sense, the trips with Klein sealed the future research direction of Lie. Klein
played a crucial role in the formative years of Lie, and the converse is also true. We
will discuss their interaction in more detail in �8 and �9.

At the outbreak of the Franco–Prussian war in July, Klein left, and Lie stayed
for one more month and then decided to hike to Italy. But he was arrested near
Fontainebleau as he was suspected of being a spy and spent one month in jail. Dar-
boux came and freed him. In [8], Darboux wrote:

True, in 1870 a misadventure befell him, whose consequences I was instrumen-
tal in averting. Surprised at Paris by the declaration of war, he took refuge at

2The publication of this paper is unusual also by today’s standards. According to [2], “His first published
paper appeared in 1869. It gives a new representation of the complex plane and uses ideas of Plücker. But Lie
had difficulties in getting these ideas published by the Academy in Christiania. He was impatient. Professor
Bjerknes asked for more time to look at the paper, but Professor Broch returned it after two days – saying he
had understood nothing! However, three other professors – who probably understood the material even less –
supported publication. This happened as a result of influence by friends of Lie.”

3The German version of this paper is still only 8 pages long, but in his collected works edited by Engel and
Heegaard, there are over 100 pages of commentaries devoted to it.
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Fontainebleau. Occupied incessantly by the ideas fermenting in his brain, he would
go every day into the forest, loitering in places most remote from the beaten path,
taking notes and drawing figures. It took little at this time to awaken suspicion.
Arrested and imprisoned at Fontainebleau, under conditions otherwise very com-
fortable, he called for the aid of Chasles, Bertrand, and others; I made the trip to
Fontainebleau and had no trouble in convincing the procureur impérial; all the notes
which had been seized and in which figured complexes, orthogonal systems, and
names of geometers, bore in no way upon the national defenses.

Afterwards, Lie wrote to his close friend [26, p. XV], “except at the very first,
when I thought it was a matter of a couple of days, I have taken things truly philo-
sophically. I think that a mathematician is well suited to be in prison.”

In fact, while he was in prison, he worked on his thesis and a few months later,
he submitted his thesis, on March 1871. He received his doctorate degree in July
1872, and accepted a new chair at the university of Christiania set up for him by the
Norwegian National Assembly. It was a good thesis, which dealt with the integration
theory of partial differential equations. After his thesis, Lie’s mathematics talent was
widely recognized and his mathematical career was secured.

When Lie worked on his thesis with a scholarship from the University of Christia-
nia, he needed to teach at his former grammar school to supplement his income. With
this new chair, he could devote himself entirely to mathematics. Besides developing
his work on transformation groups and working with Klein towards the formulation
of the Erlangen program, Lie was also involved in editing with his former teacher
Ludwig Sylow the collected works of Abel. Since Lie was not familiar with alge-
bras, especially with Abel’s works, this project was mainly carried out by Sylow. But
locating and gathering manuscripts of Abel took a lot of effort to both men, and the
project took multiple years.

In his personal life, Lie married Anna Birch in 1874, and they had two sons and
a daughter.

Lie published several papers on transformation groups and on the applications to
integration of differential equations and he established a new journal in Christiania
to publish his papers, but these papers did not receive much attention. Because of
this, Lie started to work on more geometric problem such as minimal surfaces and
surfaces of constant curvature.

Later in 1882 some work by French mathematicians on integration of differential
equations via transformation groups motivated Lie to go back to his work on integra-
tion of differential equations and theories of differential invariants of groups.

4 A mature Lie and his collaboration with Engel

There were two people who made, at least contributed substantially to make, Lie the
mathematician we know today. They were Klein and Engel. Of course, his story with
Klein is much better known and dramatic and talked about, but his interaction with
Engel is not less important or ordinary.
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In the period from 1868 to 1884, Lie worked constantly and lonely to develop
his theory of transformation groups, integration problems, and theories of differential
invariants of finite and infinite groups. But he could not describe his new ideas in an
understandable and convincing way, and his work was not valued by the mathematics
community. Further, he was alone in Norway and no one could discuss with him or
understand his work.

In a letter to Klein in September 1883 [9, p. 9], Lie wrote that “It is lonely, fright-
fully lonely, here in Christiania where nobody understands my work and interests.”

Realizing the seriousness of the situation of Lie and the importance of summa-
rizing in a coherent way results of Lie and keeping him productive, Klein and his
colleague Mayer at Leipzig decided to send their student Friedrich Engel to assist
Lie. Klein and Mayer knew that without help from someone like Engel, Lie could not
produce a coherent presentation of his new novel theories.

Like Lie, Engel was also a son of a Lutheran minister. He was born in 1861, nine-
teen years younger than Lie. He started his university studies in 1879 and attended
both the University of Leipzig and the University of Berlin. In 1883 he obtained his
doctorate degree from Leipzig under Mayer with a thesis on contact transformations.
After a year of military service in Dresden, Engel returned to Leipzig in the spring
of 1884 to attend Klein’s seminar in order to write a Habilitation. At that time, be-
sides Klein, Mayer was probably the only person who understood Lie’s work and
his talent. Since contact transformations form one important class in Lie’s theories
of transformation groups, Engel was a natural candidate for this mission. Klein and
Mayer worked together to obtain a stipend from the University of Leipzig and the
Royal Society of Sciences of Saxony for Engel so that he could travel to work with
Lie in Christiania.

In June 1884, Lie wrote a letter to Engel [9, p. 10],

From 1871–1876, I lived and breathed only transformation groups and integration
problems. But when nobody took any interest in these things, I grew a bit weary
and turned to geometry for a time. Now just in the last few years, I have again taken
up these old pursuits of mine. If you will support me with the further development
and editing of these things, you will be doing me a great service, especially in that,
for once, a mathematician finally has a serious interest in these theories. Here in
Christiania, a specialist like myself is terribly lonely. No interest, no understanding.

According to a letter of Engel in the autumn of 1884 after meeting Lie [27, p. 312]:

The goal of my journey was twofold: on one hand, under Lie’s own guidance, I
should become immersed in his theories, and on the other, I should exercise a sort of
pressure on him, to get him to carry on his work for a coherent presentation of one
of his greater theories, with which I should help him apply his hand.

Lie wanted to write a major comprehensive monograph on transformation groups,
not merely a simple introduction to his new theory. It “should be a systematic and
strict-as-possible account that would retain its worth for a long time” [9, p. 11].

Lie and Engel met twice every day, in the morning at the apartment of Engel and
in the afternoon at Lie’s apartment. They started with a list of chapters. Then Lie
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dictated an outline of each chapter and Engel would supply the detail. According to
Engel [9, p. 11],

Every day, I was newly astonished by the magnificence of the structure which Lie
had built entirely on his own, and about which his publications, up to then, gave only
a vague idea. The preliminary editorial work was completed by Christmas, after
which Lie devoted some weeks to working through all of the material in order to lay
down the final draft. Starting at the end of January 1885, the editorial work began
anew; the finished chapters were reworked and new ones were added. When I left
Christiania in June of 1885, there was a pile of manuscripts which Lie figured would
eventually fill approximately thirty printer’s sheets. That it would be eight years
before the work was completed and the thirty sheets would become one hundred and
twenty-five was something neither of us could have imagined at that time.

Lie and Engel worked intensively over the nine month period when Engel was
there. This collaboration was beneficial to both parties. To Engel, it was probably the
best introduction to Lie theories and it served his later mathematical research well.
According to Kowalewski, a student of Lie and Engel, [9, p. 10], “Lie would never
have been able to produce such an account by himself. He would have drowned
in the sea of ideas which filled his mind at that time. Engel succeeded in bringing
a systematic order to this chaotic mass of thought.”

After returning to Leipzig, Engel finished his Habilitation titled “On the defining
equations of the continuous transformation groups” and became a Privatdozent.

In 1886, Klein moved to Göttingen for various reasons. (See [18] for a brief
description of Klein’s career). Thanks to the efforts of Klein, Lie moved to Leipzig
in 1886 to take up a chair in geometry. More description of this will be given in �8
below.

When Lie visited Leipzig in February 1886 to prepare for his move, he wrote to
his wife excitedly [27, p. 320], “to the best of my knowledge, there have been no
other foreigners, other than Abel and I, appointed professor at a German University.
(The Swiss are out of the calculation here.) It is rather amazing. In Christiania I have
often felt myself to be treated unfairly, so I have truly achieved an unmerited honor.”

Leipzig was the hometown of the famous Leibniz and a major culture and aca-
demic center. In comparison to his native country, it was an academic heaven for
Lie.

In April 1886, Lie became the Professor of Geometry and Director of the Math-
ematical Seminar and Institute at the University of Leipzig. Lie and Engel resumed
to work intensively on their joint book again. In 1888, the leading German scientific
publisher Teubner, based in Leipzig, published the first volume of Theory of transfor-
mation groups, which was 632 pages long.

In that year, Engel also became the assistant to Lie after Friedrich Schur left.
When Lie went to a nerve clinic near the end of 1889, Engel gave Lie’s lectures for
him.

The second volume of their joint book was published in 1890 and was 555 pages
long, and the third volume contained 831 pages and was published in 1893.
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The three big volumes of joint books with Engel would not see the light of day or
even start without the substantial contribution of Engel.

It was a major piece of work. In a 21-page review of the first volume [9, p. 16],
Eduard Study wrote,

The work in question gives a comprehensive description of an extensive theory
which Mr. Lie has developed over a number of years in a large number of indi-
vidual articles in journals . . . Because most of these articles are not well known,
and because of their concise format, the content, in spite of its enormous value, has
remained virtually unknown to the scientific community. But by the same token we
can also be thankful that the author has had the rare opportunity of being able to
let his thoughts mature in peace, to form them in harmony and think them through
independently, away from the breathless competitiveness of our time. We do not
have a textbook written by a host of authors who have worked together to introduce
their theories to a wider audience, but rather the creation of one man, an original
work which, from beginning to end, deals with completely new things [. . . ] We do
not believe that we are saying too much when we claim that there are few areas of
mathematical science which will not be enriched by the fundamental ideas of this
new discipline.

It is probably interesting to note that Engel’s role and effort in this massive work
were not mentioned here. Maybe the help of a junior author or assistant was taken
for granted in the German culture at that time.

In the preface to the third volume, Lie wrote [9, p. 15]:

For me, Professor Engel occupies a special position. On the initiative of F. Klein
and A. Mayer, he traveled to Christiania in 1884 to assist me in the preparation of
a coherent description of my theories. He tackled this assignment, the size of which
was not known at that time, with the perseverance and skill which typifies a man of
his caliber. He has also, during this time, developed a series of important ideas of
his own, but has in a most unselfish manner declined to describe them here in any
great detail or continuity, satisfying himself with submitting short pieces to Mathe-
matische Annalen and, particularly, Leipziger Berichte. He has, instead, unceasingly
dedicated his talent and free time which his teaching allowed him to spend, to work
on the presentation of my theories as fully, as completely and systematically, and
above all, as precisely as is in any manner possible. For this selfless work which
has stretched over a period of nine years, I, and, in my opinion, the entire scientific
world owe him the highest gratitude.

Lie and Engel formed a team both in terms of writing and teaching. Some students
came to study with both Lie and Engel. Engel also contributed to the success of Lie’s
teaching. For example, a major portion of students who received the doctoral degree
at Leipzig was supervised under Lie. Lie also thanked Engel for this in the preface of
the third volume.

But this preface also contained a description of some conflict with Klein, and
hence Engel’s academic future suffered due to this. See �9 for more detail.
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5 Lie’s breakdown and a final major result

After his move to Leipzig, Lie worked hard and was very productive. While Leipzig
was academically stimulating to Lie, it was not stress-free for him, and relations with
others were complicated too. “The pressure of work, problems of collaboration, and
domestic anxieties made him sleepless and depressed, and in 1889 he had a complete
breakdown” [27, p. 328]. Lie had to go to a nerve clinic and stayed there for seven
months. He was given opium, but the treatment was not effective, and he decided to
cure the problem himself.4 He wrote to his friend [26, XXIII]:

In the end I began to sleep badly and finally did not sleep at all. I had to give up my
lecturing and enter a nerve clinic. Unfortunately I have been an impossible patient.
It has always been my belief that the doctors did not understand my illness. I have
been treated with opium, in enormous dose, to calm my nerves, but it did not help.
Also sleeping draughts.

Three to four weeks ago I got tired of staying at the nerve clinic. I decided to try
to see what I could do myself to regain my equilibrium and the ability to sleep. I have
now done what the doctors say no one can endure, that is to say I have completely
stopped taking opium. It has been a great strain. But now, on a couple of days,
against the doctors’ advice, I have taken some exercise.

I hope now that in a week’s time I shall have completely overcome the harmful
effects of the opium cure. I think myself that the doctors have only harmed me with
opium.

My nerves are very strained, but my body has still retained its horsepower. I
shall cure myself on my own. I shall walk from morning to evening (the doctors say
it is madness). In this way I shall drive out all the filth of the opium, and afterwards
my natural ability to sleep will gradually return. That is my hope.

Finally he thought that he had recovered, and was released. Actually he was not
cured at the time of release. Instead, in the reception book of the clinic, his condition
at that time was recorded as “a Melancholy not cured” [27, p. 328]. His friends
and colleagues found changes in Lie’s attitudes towards others and his behaviors:
mistrusting and accusing others for stealing his ideas. Indeed, according to Engel
[27, p. 397], Lie did recover his mathematical ability, but “not as a human being. His
mistrust and irritability did not dissipate, but rather they grew more and more with
the years, such that he made life difficult for himself and all his friends. The most
painful thing was that he never allowed himself to speak openly about the reasons for
his despondency.”

When he was busy teaching and working out his results, he did not have much
time to pick up new topics. While at the nerve clinic, he worked again on the so-
called Helmholtz problem on the axioms of geometry5 and wrote two papers about it.

4According to the now accepted theory, Lie suffered from the so-called pernicious anemia psychosis, an
incurable disease at that time. People also believe that his soured relations with Klein and others were partly
caused by this disease. See the section on the period 1886–1898 in [9] and the reference [29] there.

5Lie’s work on the Helmholtz problem was apparently well known at the beginning of the 20th century.
According to [5, Theorem 16.7], the Lie–Helmholtz Theorem states that spaces of constant curvature, i.e., the
Euclidean space, the hyperbolic space and the sphere, can be characterized by abundance of isometries: for every
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Lie had thought of and worked on this problem for a long time and had also
criticized the work of Helmholtz and complained to Klein about it. According to [27,
p. 380–381],

Very early on, Lie was certainly clear that the transformation theory he was devel-
oping was related to non-Euclidean geometry, and in a letter to Mayer as early as
1875, Lie had pointed out that von Helmhotz’s work on the axioms of geometry from
1868, were basically and fundamentally an investigation of a class of transformation
groups: “I have long assumed this, and finally had it verified by reading his work.”

Klein too, in 1883, has asked Lie what he thought of von Helmhotz’s geomet-
ric work. Lie replied immediately that he found the results correct, but that von
Helmhotz operated with a division between the real and imaginary that was hardly
appropriate. And a little later, after having studied the treatise more thoroughly, he
communicated to Klein that von Helmhotz’s work contained “substantial shortcom-
ings”, and he thought it positively impossible to overcome these shortcomings by
means of the elementary methods that von Helmhotz had applied. Lie went on to
complete and simplify von Helmhotz’s spatial theory [. . . ]

In 1884, Lie wrote to Klein [26, XXVI]:

If I ever get as far as to definitely complete my old calculations of all groups and
point transformations of a three-dimensional space I shall discuss in more detail
Helmholtz’s hypothesis concerning metric geometry from a purely analytical aspect.

According to [27, p. 381],

Lie did further work with von Helmhotz’s space problem, and confided to Klein
in April 1887, that the earlier works on the problem had now come to a satisfying
conclusion – at least when one was addressing finite dimensional transformation
groups, and therein, a limited number of parameters. What remained was to deduce
some that extended across the board such that infinite-dimensional groups could be
included.

Lie’s work on the Helmholtz problem led him to being awarded the first Lo-
batschevsky prize in 1897. Klein wrote a very strong report on his work, and this
report was the determining factor for this award.

6 An overview of Lie’s major works
As mentioned before, Lie was very productive and he wrote many thousands of pages
of papers and multiple books. His name will be forever associated with Lie groups
and Lie algebras and several other dozen concepts and definitions in mathematics

two congruently ordered triples of points, there is an isometry of the space that moves one triple to the other,
where two ordered triples of points .v1; v2; v3/, .v0

1; v
0
2; v

0
3/ are congruent if the corresponding distances are

equal, d.vi ; vj / D d.v0
i
; v0

j
/ for all pairs i; j . References to papers of Weyl and Enriques on this theorem

were given in [5].
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(almost all of them involve Lie groups or Lie algebras in various ways). One natural
question is what exactly Lie had achieved in Lie theory. The second natural question
is: besides Lie groups and Lie algebras, what else Lie had done.

It is not easy to read and understand Lie’s work due to his writing style. In a pref-
ace to a book of translations of some papers of Lie [21] in a book series Lie Groups:
History, Frontiers and Applications, which contain also some classical books and
papers by É. Cartan, Ricci, Levi-Civita and also other more modern ones, Robert
Hermann wrote:

In reading Lie’s work in preparation for my commentary on these translations, I was
overwhelmed by the richness and beauty of the geometric ideas flowing from Lie’s
work. Only a small part of this has been absorbed into mainstream mathematics. He
thought and wrote in grandiose terms, in a style that has now gone out of fashion,
and that would be censored by our scientific journals! The papers translated here and
in the succeeding volumes of our translations present Lie in his wildest and greatest
form.

We nevertheless try to provide some short summaries. Though articles in Encyclope-
dia Britannica are targeting the educated public, articles about mathematicians often
give fairly good summaries. It might be informative and interesting to take a look at
such an article about Lie before the global theory of Lie groups were developed by
Weyl and Cartan. An article in Encyclopedia Britannica in 1911 summarized Lie’s
work on Lie theory up to that time:

Lie’s work exercised a great influence on the progress of mathematical science dur-
ing the later decades of the 19th century. His primary aim has been declared to be
the advancement and elaboration of the theory of differential equations, and it was
with this end in view that he developed his theory of transformation groups, set forth
in his Theorie der Transformationsgruppen (3 vols., Leipzig, 1888–1893), a work of
wide range and great originality, by which probably his name is best known. A spe-
cial application of his theory of continuous groups was to the general problem of
non-Euclidean geometry. The latter part of the book above mentioned was devoted
to a study of the foundations of geometry, considered from the standpoint of B. Rie-
mann and H. von Helmholtz; and he intended to publish a systematic exposition of
his geometrical investigations, in conjunction with Dr. G. Scheffers, but only one
volume made its appearance (Geometrie der Berührungstransformationen, Leipzig,
1896).

The writer of this article in 1911 might not have imagined the wide scope and multi-
faceted applications of Lie theory. From what I have read and heard, a list of topics
of major work of Lie is as follows:

1. Line complexes. This work of Lie was the foundation of Lie’s future work on
differential equations and transformation groups, and hence of Lie theory [13].
It also contains the origin of toric varieties.

2. Lie sphere geometry and Lie contact structures. Contact transformations are
closely related to contact geometry, which is in many ways an odd-dimensional
counterpart of symplectic geometry, and has broad applications in physics.
Relatively recently, it was applied to low-dimensional topology.
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3. The integration theory of differential equations. This subject has died and re-
covered in a strong way in connection with integrable systems and hidden sym-
metries.

4. The theory of transformation groups (or Lie groups). This has had a huge
impact through the development, maturing and applications of Lie groups. The
theory of transformation groups reached its height in the 1960–1970s. But the
theory of Lie groups is becoming more important with the passage of time and
will probably stay as long as mathematics is practiced.

5. Infinitesimal transformation groups (or Lie algebras). Lie algebras are simpler
than Lie groups and were at first used as tools to understand Lie groups, but
they are important in their own right. For example, the infinite-dimensional
Kac–Moody Lie algebras are natural generalizations of the usual finite di-
mensional Lie groups, and their importance and applications are now well-
established. Though they also have the corresponding Kac–Moody Lie groups,
it is not clear how useful they can be.

6. Substantial contribution to the Erlangen program, which was written and for-
mally proposed by Felix Klein and whose success and influence was partially
responsible for the breakup of the friendship between Lie and Klein. Lie con-
tributed to the formulation and also the development of this program, and his
role has been recognized more and more by both historians of mathematics and
practicing mathematicians.

7. The Helmholtz space problem: determine geometries whose geometric proper-
ties are determined by the motion of rigid bodies. See footnote 4. The solution
of this problem led Lie to be awarded the Lobachevsky prize. Lie’s work on
this problem also had a big impact on Poincaré’s work on geometry.

8. Minimal surfaces. In 1878, building on the work of Monge on integration of
the Euler–Lagrange equations for minimal surfaces, Lie assigned each mini-
mal surface a complex-analytic curve. This was the starting point of a fruitful
connection between minimal surfaces and analytic curves. Together with the
work of Weierstrass, Riemann, Schwarz, and others, this introduced the wide
use of methods and results of complex function theory in the theory of minimal
surfaces at the end of the 19th century.

7 Three fundamental theorems of Lie in the Lie theory

When people talk about Lie’s work, they often mention three fundamental theorems
of Lie. His second and third fundamental theorems are well known and stated in
many textbooks on Lie theories. On the other hand, the first fundamental theorem is
not mentioned in most books on Lie groups and Lie algebras. The discussion below
will explain the reasons:



14 Lizhen Ji

1. It addresses a basic problem in transformation group theory rather than a prob-
lem in abstract Lie theory.

2. It is such a basic result that people often take it for granted.

We will first discuss these theorems in the original setup of transformation groups
and later summarize all three theorems in the modern language.

The first theorem says that a local group action on a manifold is determined by the
induced vector fields on the manifold. Now the space of vector fields of the manifold
forms a Lie algebra. So the study of Lie group actions is reduced to the study of Lie
algebras.

This is a deep insight of Lie and is one of the reasons for people to say that Lie
reduced the study of Lie groups to Lie algebras, and hence reduced a nonlinear object
to a linear one.

In the case of a one-parameter group of local diffeomorphisms of a manifold, the
action is determined by one vector field on the manifold. Conversely, given a vector
field, the existence of the corresponding local solution should have been well known
in Lie’s time. The proper definition of manifold was not known then, but no notion of
manifolds was needed since the action of a Lie group in Lie’s work is local and hence
can be considered on Rn.

In Lie’s statement, the key point is to show how the vector fields on a manifold
M associated with a Lie group G is determined by a homomorphism from g D TeG
to the space �.M/ of vector fields on M . (One part of the theorem is that g D TeG.)

Lie’s second theorem says that given a Lie algebra homomorphism g D TeG !
�.M/, then there is a local action. One important point is that there is already a Lie
group G whose Lie algebra is g.

One special case of Lie’s Fundamental Theorems 1 and 2 is that a one-parameter
group of diffeomorphisms 't of a manifold M amounts to a vector field X on the
manifold. This has two components:

1. The family 't induces a vector field X by taking the derivative, and 't is
uniquely determined by X . The uniqueness follows from the fact that 't satis-
fies an ODE.

2. Given a vector field X , there is an one-parameter family of local diffeomor-
phisms 't which inducesX . IfM is compact, then the diffeomorphisms 't are
global. This amounts to integrating a vector field on a manifold into a flow.

The third theorem says that given any abstract Lie algebra g, and a Lie algebra
homomorphism g ! �.M/, then there is a local Lie group (or the germ of a Lie
group) G and an action of G on M which induces the homomorphism g! �.M/.

Lie was interested in Lie group actions. Now people are more interested in the
theory of abstract Lie groups and usually reformulate these results in terms of ab-
stract Lie groups and Lie algebras.

If we generalize and put these three fundamental theorems in the modern language
of Lie theory, then they can be stated as follows and can be found in most books on
Lie groups and algebras:



1 Sophus Lie, a giant in mathematics 15

1. The first theorem should be stated as: a Lie group homomorphism is deter-
mined locally by a Lie algebra homomorphism.

2. The second theorem says that any Lie group homomorphism induces a Lie al-
gebra homomorphism. Conversely, given a Lie algebra homomorphism, there
is a local group homomorphism between corresponding Lie groups. If the do-
main of the locally defined map is a simply connected Lie group, then there is
a global Lie group homomorphism.

3. The third theorem says that given a Lie algebra g, there exists a Lie group G
whose Lie algebra is equal to g. (Note that there is no group action here and
hence this statement is different from the statements above.)

8 Relation with Klein I: the fruitful cooperation

There are many differences and similarities between Lie and Klein. Lie was a good
natured, sincere great mathematician. For example, he gave free lectures in the sum-
mer to USA students to prepare them for his later formal lectures. He went out of his
way to help his Ph.D. students. He was not formal, and his lectures were not polished
and could be messy sometimes.

Klein was a good mathematician with a great vision and he was also a powerful
politician in mathematics. He was a noble, strict gentleman. His lectures were always
well-organized and polished.

Lie and Klein first met in Berlin in the winter semester of 1869–1870 and they be-
came close friends. It is hard to overestimate the importance of their joint work and
discussions on their mathematical works and careers. For example, it was Klein who
helped Lie to see the analogy between his work on differential equations and Abel’s
work on the solvability of algebraic equations, which motivated Lie to develop a gen-
eral theory of differential equations that is similar to the Galois theory for algebraic
equations, which lead to Lie theory. On the other hand, it was Lie who provided
substantial evidence to the general ideas in the Erlangen program of Klein that were
influential on the development of that program.

Klein also helped to promote Lie’s work and career in many ways. For example,
when Klein left Leipzig, he secured the vacant chair for Lie in spite of many objec-
tions. Klein drafted the recommendation of the Royal Saxon Ministry for Cultural
Affairs and Education in Dresden to the Philosophical Faculty of the University of
Leipzig, and the comment on Lie run as follows [9, p. 12]:

Lie is the only one who, by force of personality and in the originality of his thinking,
is capable of establishing an independent school of geometry. We received proof of
this when Kregel von Sternback’s scholarship was to be awarded. We sent a young
mathematician – our present Privatdocent, Dr. Engel – to Lie in Chtristiania, from
where he returned with a plethora of new ideas.
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It is also helpful to quote here a letter written by Weierstrass at that time [9, p. 12]:

I cannot deny that Lie has produced his share of good work. But neither as a scholar
nor as a teacher is he so important that there is a justification in preferring him,
a foreigner, to all of those, our countrymen, who are available. It now seems that he
is being seen as a second Abel who must be secured at any cost.

One particular fellow countryman Weierstrass had in mind was his former student
Hermann Schwarz, who was also a great mathematician.

Another crucial contribution of Klein to Lie’s career was to send Engel to help
Lie to write up his deep work on transformation groups. Without Engel, Lie’s contri-
butions might not have been so well known and hence might not have had the huge
impacts on mathematics and physics that they have now. It is perhaps sad to note
that Engel was punished by Klein in some way for being a co-author of Lie after the
breakup between Lie and Klein. One further twist was that Klein made Engel edit
Lie’s collected works carefully after Lie passed away.

9 Relation with Klein II: conflicts and the famous preface

The breakup between Lie and Klein is famous for one sentence Lie put down in the
preface of the third volume of his joint book with Engel on Lie transformation groups
published in 1893: “I am not a student of Klein, nor is the opposite the case, even if
it perhaps comes closer to the truth.”

This is usually the only sentence that people quote and say. It sounds quite strong
and surprising, but there are some reasons behind it. The issue is about the formula-
tion and credit of ideas in the Erlangen program, which was already famous at that
time. It might be helpful to quote more from the foreword of Lie [9, p. 19]:

F. Klein, whom I kept abreast of all my ideas during these years, was occasioned
to develop similar viewpoints for discontinuous groups. In his Erlangen Program,
where he reports on his and on my ideas, he, in addition, talks about groups which,
according to my terminology, are neither continuous or discontinuous. For example,
he speaks of the group of all Cremona transformations and of the group of distor-
tions. The fact that there is an essential difference between these types of groups
and the groups which I have called continuous (given the fact that my continuous
groups can be defined with the help of differential equations) is something that has
apparently escaped him. Also, there is almost no mention of the important concept
of a differential invariant in Klein’s program. Klein shares no credit for this con-
cept, upon which a general invariant theory can be built, and it was from me that
he learned that each and every group defined by differential equations determines
differential invariants which can be found through integration of complete systems.

I feel these remarks are called for since Klein’s students and friends have repeat-
edly represented the relationship between his work and my work wrongly. Moreover,
some remarks which have accompanied the new editions of Klein’s interesting pro-
gram (so far, in four different journals) could be taken the wrong way. I am no
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student of Klein and neither is the opposite the case, though the latter might be
closer to the truth.

By saying all this, of course, I do not mean to criticize Klein’s original work in
the theory of algebraic equations and function theory. I regard Klein’s talent highly
and will never forget the sympathetic interest he has taken in my research endeav-
ors. Nonetheless, I don’t believe he distinguishes sufficiently between induction and
proof, between a concept and its use.

According to [27, p. 317], in the same preface,

Lie’s assertion was that Klein did not clearly distinguish between the type of groups
which were presented in the Erlangen Programme – for example, Cremonian trans-
formations and the group of rotations, which in Lie’s terminology were neither con-
tinuous nor discontinuous – and the groups Lie had later defined with the help of
differential equations:

“One finds almost no sign of the important concept of differential invariants in
Klein’s programme. This concept, which first of all a common invariant theory could
be build upon, is something Klein has no part of, and he has learned from me that
every group that it defined by means of differential equations, determines differential
invariants, which can be found through the integration of integrable systems.”

. . . Lie continued, in their investigations of geometry’s foundation, Klein, as
well as von Helmhotz, de Tilly, Lindemann, and Killing, all committed gross errors,
and this could largely be put down to their lack of knowledge of group theory.

Maybe some explanations are in order to shed more light on these strong words
of Lie. According to [26, pp. XXIII–XXIV],

Sophus Lie gradually discovered that Felix Klein’s support for his mathematical
work no longer conformed with his own interests, and the relationship between the
two friends became more reserved. When, in 1892, Felix Klein wanted to republish
the Erlangen program and explain its history, he sent the manuscript to Sophus
Lie for a comment. Sophus Lie was dismayed when he saw what Felix Klein has
written, and got the impression that his friend now wanted to have his share of what
Sophus Lie regarded as his life’s work. To make things quite clear, he asked Felix
Klein to let him borrow the letters he had sent him before the Erlangen program was
written. When he learned that these letters no longer existed, Sophus Lie wrote to
Felix Klein, November 1892.

The letter from Lie to Klein in November 1892 goes as follows [9, p. XXIV]:

I am reading through your manuscript very thoroughly. In the first place, I am afraid
that you, on your part, will not succeed in producing a presentation that I can accept
as correct. Even several points which I have already criticized sharply are incorrect,
or at least misleading, in your current presentation. I shall try as far as possible
to concentrate my criticism on specific points. If we do not succeed in reaching
agreement, I think that it is only right and reasonable that we each present our views
independently, and the mathematical public can then form their own opinion.

For the time being I can only say how sorry I am that you were capable of
burning my so significant letters. In my eyes this was vandalism; I had received
your specific promise that you would take care of them.
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I have already told you that my period of naiveness is now over. Even if I still
firmly retain good memories from the years 1869–1872, I shall nevertheless try to
keep myself that which I regard as my own. It seems that you sometimes believe
that you have shared my ideas by having made use of them.

The comprehensive biography of Lie [27, p. 371] gives other details on the origin of
this conflict:

The relationship between them [Lie and Klein] had certainly cooled over recent
years, although they continued to exchange letters the same way, although not as
frequently as earlier. But it was above all professional divergencies that were cen-
tral to the fact that Lie now broke off relationship. Following Lie’s publication of
the first volume of his Theorie der Transformationsgruppen, Klein judged that there
was sufficient interest to have his Erlangen Programme been republished. But before
Klein’s text from 1872 was printed anew, Klein had contacted Lie to find out how
the working relationship and exchange of ideas between them twenty years earlier
should be presented. Lie had made violent objections to the way in which Klein
had planned to portray the ideas and the work. But Klein’s Erlangen Programme
was printed, and it came out in four different journals, in German, Italian, English
and French – without taking into account Lie’ commentary on his assistance in for-
mulating this twenty-year-old programme. More and more in mathematical circles,
Klein’s Erlangen Programme was spoken of as central to the paradigm shift in ge-
ometry that occurred in the previous generation. A large part of the third volume of
Lie’s great work on transformation groups was devoted to a deepening discussion
on the hypotheses or axioms that ought to be set down as fundamental to a geom-
etry, that – whether or not it accepted Euclid’s postulates – satisfactorily clarified
classical geometry as well as the non-Euclidean geometry of Gauss, Lobachevsky,
Bolyai, and Riemann.

The information that spread regarding the relationship between Klein’s and
Lie’s respective work, was, according to Lie, both wrong and misleading. Lie con-
sidered he had been side-lined but was eager to “set things right”, and grasped the
first and best opportunity. In front of the professional substance of his work he
placed his twenty-page foreword. The power-charge that liquidated their friendship
and sent shock-waves through the mathematical milieu was short, if not sweet.

Klein was the king of German mathematics and probably also of the European
mathematics at that time. What was people’s reaction to the strong preface of Lie?
Maybe a letter from Hilbert to Klein in 1893 will explain this [26, p. XXV]: “In his
third volume, his megalomania spouts like flames.”

Lie probably did not suffer too much professionally from this conflict with Klein
since he had the chair at Leipzig. But this was not the case with Engel. Since Engel’s
name also appeared on the book, he had to pay for this. Engel was looking for a job,
and a position of professorship was open at that time at the University of Königsberg,
the hometown and home institution of Hilbert where he held a chair in mathematics,
and this open position was a natural and likely choice for Engel. In the same letter to
Klein, Hilbert continued [26, p. XXV], “I have excluded Engel completely. Although
he himself has not made any comment in the preface, I hold him to some extent co-
responsible for the incomprehensible and totally useless personal animosity which
the third volume of Lie’s work on transformation groups is full off.”
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Engel could not get an academic job for several years,6 and Klein arranged Engel
to edit the collected works of Grassmann and then later the collected works of Lie;
on the latter he worked for several decades.

Another consequence of this conflict with Klein was that Lie could not finish
another proposed joint book with Engel on applications of transformation groups to
differential equations. According to [27, p. 390–391], after the publication of these
three volumes,

The next task that Lie saw for himself was to make refinements and applications of
what had now been completely formulated. But this foreword [of the third volume]
with its sharp accusations against Klein, caused hindrances to the further work. Be-
cause Lie in the same foreword had praised Engel to the skies for his “exact” and
“unselfish activity”, it now became difficult for Engel to continue to collaborate with
Lie – consequently as well, nothing came of the announced work on, among other
things, differential invariants and infinite-dimensional continuous groups. As for
Engel, his career outlook certainly now lay in other directions than Lie’s. Accord-
ing to Lie’s German student, Gerhard Kowalewski, relations between Lie and Engel
gradually became so cool that they were seldom to be seen in the same place.

It should be pointed out that relations between Lie and Engel had some hard time
before this foreword came out. It was caused by the fight between Lie and Killing due
to some overlap in their work on Lie theories, in particular, Lie algebras. For some
reason, at the initial stage, Killing communicated with Engel and cited some papers of
Engel instead of Lie’s, and Lie felt than Engel betrayed his trust. For a more detailed
discussion on this issue, see [27, pp. 382–385, p. 395].7 After Lie’s death, Engel
continued and carried out his mentor’s work in several ways. See �11 for example.
He was a faithful disciple and was justly awarded with the Norwegian Order of St
Olaf and an honorary doctorate from the University of Oslo.

Maybe there is one contributing factor to these conflicts.8 It is the intrinsic mad-
ness of all people who are devoted to research and are doing original work, in partic-

6On the other hand, all things ended well with Engel. In 1904, he accepted the chair of mathematics at the
University of Greifswald when his friend Eduard Study resigned, and in 1913, took the chair of mathematics
at the University of Giessen. Engel also received a Lobachevsky Gold Medal. The Lobachevsky medal is
different from the Lobatschevsky prize won by his mentor Lie and his fellow countryman Wilhelm Killing. The
medal was given on a few occasions to the referee of a person nominated for the prize. For instance, Klein also
received, in 1897, a the Gold medal, for his report on Lie. See [28].

7Manfred Karbe pointed out that in his autobiography [20, pp. 51–52], Kowalewski speculates about the
mounting alienation of Lie and Engel, and reports about Lie’s dislike of his three-volume Transformation
Groups. When Lie needed some material of his own in his lectures or seminars, he never made use of these
books but only of the papers in Math. Ann. And Kowalewski continues on page 52, line -5:

“Von hier aus kann man es vielleicht verstehen, dass die Abneigung gegen das Buch sich auf den Mitarbeiter
bertrug, dem er doch so sehr zu Dank verpflichtet war.” (From this one may perhaps understand that the aversion
to the book is transferred to the collaborator to whom he was so much indebted.)

8There has been an explanation of Lie’s behavior in this conflict with Klein by establishing a relation between
genius and madness. According to [27, p. 394], after Lie’s death, “In Göttingen, Klein made a speech that gave
rise to much rumor, not least because here, in addition to all his praise for his old friend, Klein suggested that
the close relationship between genius and madness, and that Lie had certainly been struck by a mental condition
that was tinged with a persecution complex – at least, by assessing the point from notes that Klein made for his
speech, it seems that this was the expression he used.”
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ular mathematicians and scientists. According to a comment of Lie’s nephew, Johan
Vogt, a professor at the University of Oslo in economics, and also a translator, writer
and editor, made in 1930 on his uncle [27, p. 397],

We shall avail ourselves of a popular picture. Every person has within himself some
normality and some of what may be called madness. I believe that most of my col-
leagues possess ninety-eight percent normality and two percent madness. But So-
phus Lie certainly had appreciably more of the latter. The merging of a pronounced
scientific gift and an impulsiveness that verges on the uncontrollable, would certainly
describe many of the greatest mathematicians. In Sophus Lie this combination was
starkly evident.

It might be helpful to point out that later at the request of the committee of Lo-
batschevsky prize, Klein wrote a very strong report about the important work of Lie
contained in this third volume on transformation groups, and this report was instru-
mental in securing the inaugural Lobatschevsky prize for Lie.

It might also be helpful to quote from Klein on Lie’s work related to this conflict.
The following quote of Klein [19, pp. 352–353], its translation and information about
it were kindly provided by Hubert Goenner:

I will now add a personal remark. The already mentioned Erlangen Program is about
an outlook which – as already stated in the program itself – I developed in personal
communication with Lie (now professor in Leipzig, before in Christiana). Lie who
has been engaged particularly with transformation groups, created a whole theory of
them, which finds its account in a larger œuvre “Theory of Transformation Groups”,
edited by Lie and Engel, Vol. I 1888, Vol. II 1890. In addition, a third volume
will appear, supposedly in not all too distant a time. Obviously, we cannot think
about responding now to the contents of Lie’s theories [. . . ]. My remark is limited
to having called attention to Lie’s theories.

The above comment was made by Klein in the winter of 1889 or at the beginning
of 1890, but Klein backed its publication until 1893, the year of the ill-famed preface
to the third volume by Lie and Engel.

Further details about this unfortunate conflict and the final reconciliation between
these two old friends are also given in [27, pp. 384–394]. See also the article [18]
for more information about Klein and on some related discussion on the relationship
between Lie and Klein.

The above discussion showed that the success of the Erlangen program was one
cause for the conflict between Lie and Klein. A natural question is how historians
of mathematics have viewed this issue. Given the fame and impacts of the Erlangen
program, it is not surprising that there have been many historical papers about it.
Two papers [15] [3] present very different views on the contributions of Klein and
Lie to the success and impacts of this program. The paper [15] argues convincingly
that Lie’s work in the period 1872–1892 made the Erlangen program a solid program
with substantial results, while the paper [3] was written to dispute this point of view.
It seems that the authors are talking about slightly different things. For example, [3]
explains the influence of Klein and the later contribution of Study, Cartan and Weyl,
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but most of their contributions were made after 1890. The analysis of the situation in
[10, p. 550] seems to be fair and reasonable:

It seems that the Erlangen Program met with a slow reception until the 1890s, by
which time Klein’s status as a major mathematician at the University of Göttingen
had a great deal to do with its successful re-launch. By that time too a number of
mathematicians had done considerable work broadly in the spirit of the programme,
although the extent to which they were influenced by the programme, or were even
aware of it, is not at all clear [. . . ] Since 1872 Lie had gone on to build up a vast
theory of groups of continuous transformations of various kinds; but however much
it owned to the early experiences with Klein, and however much Klein may have
assisted Lie in achieving a major professorship at Leipzig University in 1886, it
is doubtful if the Erlangen Program had guided Lie’s thoughts. Lie was far too
powerful and original a mathematician for that.

10 Relations with others

As mentioned, both Klein and Engel played crucial roles in the academic life of
Lie. Another important person to Lie is Georg Scheffers, who obtained his Ph.D.
in 1890 under Lie. Lie thought highly of Scheffers. In a letter to Mittag–Leffler [27,
p. 369], Lie wrote “One of my best pupils (Scheffers) is sending you a work, which
he has prepared before my eyes, and who has taken his doctorate here in Leipzig with
a dissertation that got the best mark . . . Scheffers possesses an unusually evident
talent and his calculations are worked through with great precision, and bring new
results.”

After the collaboration between Lie and Engel unfortunately broke off, Scheffers
substituted for Engel and edited two of Lie’s lecture notes in the early 1890s. They
are Lectures on differential equations with known infinitesimal transformations of
568 pages, and Lectures on Continuous groups of 810 pages. Later in 1896, they
also wrote a book together, Geometry of contact transformations of 694 pages. All
these book projects of Lie with others indicate that Lie might not have been able to
efficiently write up books by himself. For example, he only wrote by himself a book
of 146 pages and a program for a course in Christiania in 1878.

In 1896 Scheffers became docent at the Technical University of Darmstadt, where
he was promoted to professor in 1900. The collaboration with Lie stopped after this
move. From 1907 to 1935, when he retired, Scheffers was a professor at the Technical
University of Berlin.

According to a prominent American mathematician, G. A. Miller, from the end of
the nineteenth century, “The trait of Lie’s character which impressed me most forcibly
when I first met him in the summer of 1895 was his extreme openness and lack of
effort to hide ignorance on any subject.”

Though he was motivated by discontinuous groups (or rather finite groups) taught
by Sylow and kept on studying a classical book on finite substitution groups by Jor-
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dan, he could never command the theory of finite groups. Miller continued, “In fact
he frequently remarked during his lectures that he always got stuck when he entered
upon the subject of discontinuous groups.”

When Lie first arrived in Leipzig, teaching was a challenge for him due to both
lack of students and the amount of time needed for preparation. In a letter to a friend
from the youth, Lie wrote [26, p. XXI], “While, in Norway, I hardly spent five
minutes a day on preparing the lectures, in Germany I had to spend an average of
about 3 hours. The language is always a problem, and above all, the competition
implies that I had to deliver 8–10 lectures a week.”

When Lie and his assistant Engel decided to present their own research on trans-
formation groups, students from all over the world poured in, and the Ecole Normale
sent its best students to study with Lie. It was a big success. According to the recol-
lection of a student of Lie [26, p. XXVII]:

Lie liked to teach, especially when the subject was his own ideas. He had vivid
contact with his students, who included many Americans, but also Frenchmen, Rus-
sians, Serbs and Greeks. It was his custom to ask us questions during the lectures
and he usually addressed each of us by name.

Lie never wore a tie. His full beard covered the place where the tie would have
been, so even the most splendid tie would not have shown to advantage. At the
start of a lecture he would take off his collar with a deft movement, saying: “I love
to be free”, and he would then begin his lecture with the words “Gentlemen, be
kind enough to show me your notes, to help me remember what I did last time.”
Someone or other on the front bench would immediately stand up and hold out the
open notebook, whereupon Lie, with a satisfied nod of the bead, would say “Yes,
now I remember.” In the case of difficult problems, especially those referring to Lie’s
complex integration theories, it could happen that the great master, who naturally
spoke without any kind of preparation whatsoever, got into difficulties and, as the
saying goes, became stuck. He would then ask one of his elite students for help.

Lie had many students. Probably one of the most famous was Felix Hausdorff.
Lie tried to convince Hausdorff to work with him on differential equations of the first
order without success. Of course, Hausdorff became most famous for his work on
topology. See [27, p. 392–393] for a description of Hausdorff and his interaction
with Lie.

Throughout his life, Lie often felt that he was under-recognized and under-appre-
ciated. This might be explained by his late start in mathematics and his early isolation
in Norway. He paid careful attention to other people’s reaction to his work. For
example, Lie wrote about Darboux in a letter to Klein [25] in October 1882:

Darboux has studied my work with remarkable thoroughness. This is good insofar
as he has given gradually more lectures on my theories at the Sorbonne, for example
on line and sphere geometry, contact transformation, and first-order partial differ-
ential equations. The trouble is that he continually plunders my work. He makes
inessential changes and then publishes these without mentioning my name.
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11 Collected works of Lie:
editing, commentaries and publication

Since Lie theories are so well known and there are many books on different aspects of
Lie groups and Lie algebras, Lie’s collected works are not so well known to general
mathematicians and students. The editing and publication of Lie’s collected works
are both valuable and interesting to some people. In view of this, we include some
relevant comments.

Due to his death at a relatively young age, the task of editing Lie’s work com-
pletely fell on others. It turned out that editing and printing the collected work of
Sophus Lie was highly nontrivial and a huge financial burden on the publisher. The
situation is well explained in [6]:

Twenty-three years after the death of Sophus Lie appears the first volume to be
printed of his collected memoirs. It is not that nothing has been done in the mean-
time towards making his work more readily available. A consideration of the matter
was taken up soon after his death but dropped owing to the difficulties in the way
of printing so large a collection as his memoirs will make. An early and unsuc-
cessful effort to launch the enterprise was made by the officers of Videnskapssel-
skapet i Kristiania; but plans did not take a definite form till 1912; then through the
Mathematisch-physische Klasse der Leipziger Akademie and the publishing firm of
B. G. Teubner steps were taken to launch the project. Teubner presented a plan for
raising money by subscription to cover a part of the cost of the work and a little
later invitations to subscribe were sent out. The responses were at first not encour-
aging; from Norway, the homeland of Lie, only three subscriptions were obtained in
response to the first invitations.

In these circumstances, Engel, who was pressing the undertaking, resorted to
an unusual means. He asked the help of the daily press of Norway. On March
9, 1913, the newspaper TIDENS TEGN of Christiania carried a short article by
Engel with the title Sophus Lies samlede Afhandlinger in which was emphasized
the failure of Lie’s homeland to respond with assistance in the work of printing
his collected memoirs. This attracted the attention of the editor and he took up the
campaign: two important results came from this, namely, a list of subscriptions from
Norway to support the undertaking and an appropriation by the Storthing to assist
in the work. By June the amount of support received and promised was sufficient to
cause Teubner to announce that the work could be undertaken; and in November the
memoirs for the first volume were sent to the printer, the notes and supplementary
matter to be supplied later.

The Great War so interfered with the undertaking that it could not be contin-
ued, and by the close of the war circumstances were so altered that the work could
not proceed on the basis of the original subscriptions and understandings and new
means for continuing the work had to be sought. Up to this time the work had been
under the charge of Engel as editor. But it now became apparent that the publication
of the memoirs would have to become a Norwegian undertaking. Accordingly, Poul
Heegaard became associated with Engel as an editor. The printing of the work be-
came an enterprise not of the publishers but of the societies which support them in
this undertaking. Under such circumstances the third volume of the series, but the
first one to be printed, has now been put into our hands. “The printing of further vol-
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umes will be carried through gradually as the necessary means are procured; more
I cannot say about it,” says Engel, “because the cost of printing continues to mount
incessantly.”

The first volume was published in 1922, and the sixth volume was published in 1937.
The seventh volume consisted of some unpublished papers of Lie and was published
only in 1960 due to the World War II and other issues. This was certainly a major
collected work in the last 100 years.

The collected works of Lie are very well done with the utmost dedication and
respect thanks to the efforts of Engel and Heegaard. This can be seen in the editor’s
introduction to volume VI of Lie’s Collected Works,

If one should go through the whole history of mathematics, I believe that he will
not find a second case where, from a few general thoughts, which at first sight do
not appear promising, has been developed so extensive and wide-reaching a theory.
Considered as an edifice of thought Lie’s theory is a work of art which must stir
up admiration and astonishment in every mathematician who penetrates it deeply.
This work of art appears to me to be a production in every way comparable with
that [. . . ] of a Beethoven [. . . ] It is therefore entirely comprehensible if Lie [. . . ]
was embittered that ‘deren Wesen, ja Existenz, den Mathematikern fort-während
unbekannt zu sein scheint’ (p. 680). This deplorable situation, which Lie himself
felt so keenly, exists no longer, at least in Germany. In order to do whatever lies in
my power to improve the situation still further, [. . . ] I have sought to clarify all the
individual matters (Einzelheiten) and all the brief suggestions in these memoirs.

Each volume contains a substantial amount of notes, commentaries and supplemen-
tary material such as letters of Lie, and “This additional material has been prepared
with great care and with the convenience of the reader always in mind.” For example,
as mentioned before, Lie’s first paper was only 8 pages long, but the commentary
consisted of over 100 pages. According to [4],

Although Engel was himself an important and productive mathematician he has
found his place in the history of mathematics mainly because he was the closest stu-
dent and the indispensable assistant of a greater figure: Sophus Lie, after N. H. Abel
the greatest Norwegian mathematician. Lie was not capable of giving to the ideas
that flowed inexhaustibly from his geometrical intuition the overall coherence and
precise analytical form they needed in order to become accessible to the mathemat-
ical world [. . . ] Lie’s peculiar nature made it necessary for his works to be eluci-
dated by one who knew them intimately and thus Engel’s “Annotations” completed
in scope with the text itself.
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1 Introduction

Felix Klein was not only one of the great mathematicians but also one of the great ed-
ucators and scientific writers of the nineteenth and the early twentieth century. He was
a natural born leader and had a global vision for mathematics, mathematics education
and mathematical development. He had the required ambition, drive and ability to
remove obstacles on his way and to carry out his plans. He was a benign and no-
ble dictator, and was the most kingly mathematician in the history of mathematics.
He had a great deal of influence on German mathematics and the world mathematics
community. Indeed, it was Klein who turned Göttingen into the leading center of
mathematics in the world.

I have heard of Felix Klein for a long time but have not really tried to look up
information about him. On the other hand, when I became interested in him and
wanted to learn more about him, for example, the exact mathematical content of his
competition with Poincaré, his relation with Lie and their conflicts, and his contri-
bution towards the Erlangen program, there was no biography of Klein in English
which was easily available. Later we found some extensive writings about him in
obituary notices [18], and in books [13] [12]. After reading various sources about
Klein which were available to me in English, I found him an even more interesting
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person than I thought. One purpose in writing this chapter was to share with the
reader a summary of what I read about this incredible mathematician with some em-
phasis on his lectures in the USA around 1893 and their influence on the development
of the Americian mathematics community, and some thoughts which occurred to me
during this reading process. Another purpose is to give a brief outline of the rich life
of Klein and to supplement other more scientific papers in this book.1

Probably, Klein is famous to different groups of people for different reasons. For
example, for people working in Lie theories and geometry, the Erlangen program he
proposed had far-reaching consequences; for people working on discrete subgroups of
Lie groups and automorphic forms, Kleinian groups and his famous books with Fricke
on discrete groups of linear fractional transformations (or Möbius transformations)
and automorphic forms have had a huge impact; many other people enjoy his books
on elementary mathematics and history of mathematics, and of course high school and
college teachers also appreciate his books and points of view on education. A special
feature of Klein is his broad command of and vision towards mathematics. We will
discuss more on this last point from different aspects.

In terms of mathematical contribution, Klein was probably not of the same rank
as his predecessors Gauss or Riemann and his younger colleagues Hilbert and Weyl
in Göttingen, but he also made real contributions and was a kingly mathematician,
more kingly than any of the others mentioned above. He could command respect
from others like a king or even like a god. In some sense, Klein earned this. On the
influence of Klein on the mathematics in Göttingen, Weyl [7, p. 228] said that “Klein
ruled mathematics there like a god, but his godlike power came from the force of
his personality, his dedication, and willingness to work, and his ability to get things
done.”

But kings are kings and can be tough and remote from the ordinary people. In
1922, the eminent analyst Kurt O. Friedrichs was young and visited Klein [7, p. 229]:
“I was amazed, simply swept off my feet by Klein’s grace and charm. ... He could be
very charming and gentlemanly when all went his way but with anyone who crossed
him he was a tyrant.”

Klein made important original contributions to mathematics early in his career.
But his research was cut short due to exhaustion and the nervous breakdown caused
by his competition with Poincaré on Fuchsian groups and the uniformization of Rie-
mann surfaces.2 He fell down but picked it up. Very few people can do this. Since
he could not do mathematical research anymore, he devoted his time and energy to

1Most mathematicians have heard of Klein and have been influenced by his mathematics. On the other hand,
various writings and stories about him are scattered in the literature, and we feel that putting several snapshots
from various angles could convey a vague global picture of the man and his mathematics. It might be helpful to
quote [18, p. i]: “After his death there appeared, one after another, a number of sketches of the man and his work
from the pens of many of his pupils. But, just as a photograph of a man of unusual personality, or of a place of
striking beauty, conveys little to one not personally acquainted with the original, so it is, and so it must be, with
these sketches of Klein.” For the reader now, these many sketches are probably not easily accessible.

2It is interesting to see a different explanation of the breakdown of Klein in [18, p. vii]: “His breakdown
was probably accelerated by the antagonism he experienced at Leipzig. He was much younger than his col-
leagues, and they resented his innovating tendencies. In particular, there was opposition to his determination to
avail himself of the vaunted German “Lehrfreiheit”, and to interpret the word “Geometry” in its widest sense,
beginning his lectures with a course on the Geometric Theory of Functions.”
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education and mathematical writing, and more importantly to building and providing
a stimulating environment for others. For example, he brought Hilbert to Göttingen
and turned this small college city into the leading center of mathematics, which at-
tracted people from all over the world. His lecture tours in the USA near the end of
the nineteenth century also played a pivotal role in the emergence of the US mathe-
matics community as one of the leading ones in the world. In this sense, Klein was
also a noble mathematician and had a far-reaching and long-lasting impact.

His approach to mathematics emphasizes the big picture and connections between
different subjects without paying too much attention to details or work to substantiate
his vision. He valued results and methods which can be applied to a broad range of
topics and problems. For example, he proposed the famous Erlangen program but
did not really work on it to substantiate it. Instead, his friend Lie worked to make it
an important concrete program. As Courant once commented, Klein tended to soar
above the terrain that occupied ordinary mathematicians, taking in and enjoying the
vast view of mathematics, but it was often difficult for him to land and to do the hard
boring work. He had no patience for thorny problems that require difficult technical
arguments. What counted for him was the big pictures and the general pattern behind
seemingly unrelated results. According to Courant [13, p. 179], Klein had certainly
understood “that his most splendid scientific creations were fundamentally gigantic
sketches, the completion of which he had to leave to other hands.”

Klein was a master writer and speaker. In some sense, he was a very good sales-
man of mathematics, but he drew a lot of criticism for this. Because of this, he had
a lot of influence on mathematics and the mathematics community. He is a unique
combination of an excellent mathematician, master teacher and efficient organizer.

People’s responses to these features of Klein were not all positive. According to
a letter from Mittag-Leffler to Hermite in 1881 [7, p. 224]:

You asked me what are the relations between Klein and the great Berliners . . .
Weierstrass finds that Klein is not lacking in talent but is very superficial and even
sometimes rather a charlatan. Kronecker finds that he is quite simply a charlatan
without real merit. I believe that is also the opinion of Kummer.

In 1892, when the faculty of Berlin University discussed the successor to Weier-
strass, they rejected Klein as a “dazzling charlatan” and a “complier.” His longtime
friend Lie’s opinion was also harsh but more concrete [7, p. 224]:

I rank Klein’s talents highly and shall never forget the ready sympathy with which
he always accompanied me in my scientific attempts; but I opine that he does not,
for instance, sufficiently distinguish induction from proof, and the introduction of
a concept from its exploitation.

In spite of all these criticisms and reservations, Klein was the man who was largely
responsible for restoring Göttingen’s former luster and hence for initiating a process
that transformed the whole structure of mathematics at German universities and also
in some other parts of the world. Among people from Europe, he had the most im-
portant influence on the emergence of mathematics in the USA. There is no question
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of the fact as to he was the most dynamic mathematical figure in the world in the last
quarter of the nineteenth century.

Klein represented an ideal German scholar in the nineteenth century. He strove
for and attained an extraordinary breadth of knowledge, much of which he acquired
in his active interaction with other mathematicians. He also freely shared his insights
and knowledge with his students and younger colleagues, attracting people towards
him from around the world.

Unlike most mathematicians who only affected certain parts of mathematics and
the mathematics community, the influence of Klein is also global and foundational.
The legacy of Klein lives on as it is witnessed in the popularity of his books, the con-
tinuing and far-reaching influence of the general philosophy of the Erlangen program,
interaction between mathematics and physics, and the theory of Kleinian groups. In
some sense, Klein did not belong to his generation but was ahead of time.

2 A nontrivial birth

It is customary that kings are born at special times and places. Maybe their destiny
gives them something extra to start with. The mostly kingly mathematician, Felix
Klein, was born in the night of April 25, 1849, in Düsseldorf in the Rhineland when
[18, p. i]

there was anxiety in the house of the secretary to the Regierungspräsident. Without,
the canon thundered on the barricades raised by the insurgent Rhinelanders against
their hated Prussian rulers. Within, although all had been prepared for flight, there
was no thought of departure; [. . . ] His birth was marked by the final crushing of
the revolution of 1848; his life measured the domination of Prussia over Germany,
typifies all that was best and nobest in that domination.

Shortly after his birth, his hometown and the nearby region became the battle-
ground of the last war of the 1848 Revolution in the German states.

In the twenty years that followed Klein’s birth, Prussia became a major power in
Europe, and there were almost constantly conflicts and turmoils, culminating in the
Franco–Prussian war, with a crushing victory over France.

Later Klein served in the voluntary corps of emergency workers and he witnessed
firsthand the battle sites of Metz and Sedan, where the Empire of Louis-Napoléon
Bonaparte (Napoléon III) finally collapsed and was replaced by the Third Republic.
In Germany the Second German Empire began, with Otto von Bismarck as a powerful
first chancellor.3

3Otto von Bismarck was a conservative German statesman who dominated European affairs from the 1860s
to his dismissal in 1890. After a series of short victorious wars he unified numerous German states into a power-
ful German Empire under Prussian leadership, then created a “balance of power” that preserved peace in Europe
from 1871 until 1914.
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Klein’s academic life practically coincided with the rise and fall of the second
Reich. All these historical events influenced Klein’s character and his perspective on
mathematics and the mathematics community.

3 Education

Overall, Klein had a fairly normal life and uninterrupted education. He attended the
gymnasium in Düsseldorf, and did not find the Latin and Greek classics exciting.

Klein entered the University of Bonn in 1865 at the age of 16 and found the
courses there, with emphasis on natural sciences, ideally suited to him. His university
education at Bonn contributed significantly to his universalist outlook with a wide
variety of subjects including mathematics, physics, botany, chemistry, zoology, and
mineralogy, and he participated in all five sections of the Bonn Natural Sciences
Seminar.

In mathematics, Klein took some courses with the distinguished analyst Rudolf
Lipschitz, including analytic geometry, number theory, differential equations, me-
chanics and potential theory. But Lipschitz was just an ordinary teacher to Klein.

When he entered the University of Bonn, Klein aspired to become a physicist and
studied with Plücker, a gifted experimental physicist and geometer. Plücker picked
Klein to be an assistant for the laboratory courses in physics when Klein was only in
his second semester. The interaction with Plücker probably had the most important
influence on Klein in his formative years.

By the time Klein met Plücker in 1866, Plücker’s interests had returned to geom-
etry after having worked exclusively on physics for nearly twenty years, and he was
writing a two-volume book on line geometry titled “Neue Geometrie des Raumes.”
When he died unexpectedly in May 1868, Plücker had only finished the first vol-
ume. As a student of Plücker, the death of Plücker provided a uniquely challenging
opportunity for Klein: to finish the second volume and edit the work of his teacher.

Originally, the rising and inspiring geometer Clebsch at Göttingen was respon-
sible for completing the book of Plücker. But he delegated this task to Klein. This
seemingly impossible task changed the life of Klein in many ways.

First, it gave Klein a good chance to learn line geometry solidly, which played an
important role in his future work with Lie and eventually in the Erlangen program.
Second, it also brought him into close contact with Clebsch and his school which in-
cluded many distinguished mathematicians such as Gordan, Max Noether, Alexander
von Brill, etc. Through them, Klein learned and worked on Riemann’s theory of func-
tions, which eventually became Klein’s favorite subject. He also became Clebsch’s
natural successor in many other ways. For example, he took over many students of
Clebsch and the journal Mathematische Annalen started by Clebsch.

Klein obtained his Ph.D. degree in December 1868 with Rudolf Lipschitz as
a joint (or nominal) advisor.
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4 Three people who had most influence on Klein

There are three people who played a crucial role in the informative years of Klein.
The first person was Plücker, his teacher during his college years. Physics and the

interaction between mathematics and physics had always played an important role in
the mathematical life of Klein. It is reasonable to guess that this might have something
to do with the influence of Plücker. For most mathematicians, Plücker is well known
for Plücker coordinates in projective geometry. But he started as a physicist. In fact,
In 1836 at the age of 35, he was appointed professor of physics at the University of
Bonn and he started investigations of cathode rays that led eventually to the discovery
of the electron. Almost 30 years later, he switched to and concentrated on geometry.

Klein had written many books, some of which are still popular. Probably the most
original book by him is “Über Riemann’s Theorie der Algebraischen Functionen und
ihre Integrale”, published in 1882, where he tried to explain and justify Riemann’s
work on functions on Riemann surfaces, in particular, the Dirichlet principle, using
ideas from physics. Klein wrote [12, p. 178],

in modern mathematical literature, it is altogether unusual to present, as occurs in my
booklet, general physical and geometrical deliberations in naive anschaulicher form
which later find their firm support in exact mathematical proofs. [. . . ] I consider
it unjustifiable that most mathematicians suppress their intuitive thoughts and only
publish the necessary, strict (and mostly arithmetical) proofs [. . . ] I wrote my work
on Riemann precisely as a physicist, unconcerned with all the careful considerations
that are usual in a detailed mathematical treatment, and, precisely because of this, I
have also received the approval of various physicists.

In a biography of Klein [6], Halsted wrote: “The death of Plücker on May 22nd
1868 closed this formative period, of which the influence on Klein cannot be overes-
timated. So mighty is the power of contact with the living spirit of research, of taking
part in original work with a master, of sharing in creative authorship, that anyone who
has once come intricately in contact with a producer of first rank must have had his
whole mentality altered for the rest of his life. The gradual development, high attain-
ment, and then continuous achievement of Felix Klein are more due to Plücker than to
all other influences combined. His very mental attitude in the world of mathematics
constantly recalls his great maker.”

The second person was Alfred Clebsch, another important teacher of Klein. Cleb-
sch could be considered as a postdoctor mentor of Klein. After obtaining his Ph.D. in
1868, Klein went to Göttingen to work under Clebsch for eight months. When Klein
first met him, Clebsch was only 35 years old and was already a famous teacher and
leader of a new school in algebraic geometry.

Clebsch made important contributions to algebraic geometry and invariant theory.
Before Göttingen, he taught in Berlin and Karlsruhe. His collaboration with Paul Gor-
dan in Giessen led to the introduction of the Clebsch–Gordan coefficients for spher-
ical harmonics, which are now widely used in representation theory of compact Lie
groups and in quantum mechanics, and to find the explicit direct sum decomposition
of the tensor product of two irreducible representations into irreducible representa-
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tions. Together with Carl Neumann at Göttingen, Clebsch founded the mathematical
research journal Mathematische Annalen in 1868.

When Mathematische Annalen was started, the leading journal in the world was
Crelle’s Journal, which is formally called the Journal für die reine und angewandte
Mathematik and was founded by August Leopold Crelle in 1826 in Berlin. This jour-
nal is famous for many important, high-quality papers it has published. For example,
seven of the legendary Abel great papers were published in the first volume of Crelle’s
Journal.

After Clebsch died, Klein took over the Mathematische Annalen. This allowed
Klein to promote the mathematics he liked and he turned the journal into the leading
journal in the world, overtaking the role of Crelle’s Journal. Both journals are still
high quality journals and well regarded by mathematicians, in spite of hundreds of
mathematics journals around the world.

The interaction of Klein with Clebsch and his students such as Max Noether
exposed Klein to the functional ideas of Riemann, and Klein’s works on Riemann
surfaces and geometric function theory were probably his deepest concrete contribu-
tions. According to Courant [14, p. 178], “If today we are able to build on the work
of Riemann, it is thanks to Klein.”

The third person who had a great influence on Klein was Lie, who might had the
most important impact on Klein’s mathematics among the three people. Against the
advice of Clebsch, Klein went to Berlin in the winter semester of 1869–1870. Berlin
was the center of mathematics at that time, dominated by Weierstrass, Kummer and
Kronecker. There were also impressive students in Berlin at that time, which included
Cantor, Frobenius, Killing and Mittag–Leffler. Klein did not benefit much from the
lectures of the masters and did not stand out among these distinguished students. But
he met Sophus Lie and they became lifelong friends. In a letter written to his mother,
Klein wrote [7, p. 221]:

Among the young mathematicians I have made the acquaintance of someone who
appeals to me very much. He is Lie, a Norwegian whose name I already knew
from an article he had published in Christiania. We have especially busied ourselves
with similar things, so there is no lack of material for conversation. Yet we are not
only united by this common love, but also a certain repulsion to the art and manner
in which mathematics here asserts itself over and against the accomplishments of
others, particularly foreigners.

Though Lie was almost six years older than Klein, in their interaction Klein often
played the role of a more senior partner. This was also often the way viewed by
others. As we will discuss later, this was also one cause of their unfortunate later
conflict.

After his visit to Berlin, Klein and Lie were together in Paris in the spring of 1870.
When the Franco–Prussian war broke out, Klein was forced to return to Germany
for military service. They met again at many other occasions later. The interaction
and cooperation was beneficial to both of them. It is an inspiring story with sad
components: their breakup and reconciliation.
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By all accounts, Klein is now best known for the Erlangen program. But it is
fair to say that without learning Lie groups from Lie and working with Lie, Klein
might not have proposed the Erlangen program, and without the work of Lie and his
school towards it, the Erlangen program would not have been so famous now with
such a huge impact.

5 Academic career

Klein is famous for being a great teacher. But at his first job as a professor at the
University of Erlangen, only two students signed up for his class. After the first
lecture, only one of the two remained.

In 1872 Klein was appointed full professor at the University of Erlangen at the age
of 23. Clebsch had nominated him and strongly supported him, believing that Klein
would be the star of his generation. In connection with his appointment as a pro-
fessor, he gave a speech on mathematical education and separately wrote a booklet
titled “Vergleichende Betrachtungen über neuere geometrische Forschungen”, which
became the famous Erlangen program.4

Klein was not too successful as a teacher in Erlangen, and it seems that only
a small number of students attended his lectures. But he was successful as a re-
searcher during his three years there. In 1875, Klein was given a chair at the Techni-
cal University of Munich. His lectures were very popular and his first semester course
was attended by over 200 students. Together with Brill, he founded a laboratory for
the construction of mathematical models. These models became very popular and
were bought by many mathematics departments around the world. On the second
floor of the Mathematics Institute at Göttingen, one can still see a large collection of
such models. For more discussion about these models by Klein, see [4, �3.3].

During his years in Munich, both his research and his role as an editor of the
Mathematische Annalen went really well. Klein worked on the interface between
algebra and the theory of complex variables and he developed a geometric approach
to Galois theory and a unified theory of elliptic modular functions, which prepared
him for his deep and original contribution to an entirely new field: the theory of
automorphic functions. In short, he found a field of research which was well suited to
his mathematical taste and perspective: a mixture of group theory, algebraic equations
and function theory. Without any question, he was seen as the rising star of German
mathematics. In 1881, he accepted a new chair in geometry at the University of
Leipzig, which was a leading university in Germany but with a weak mathematics
department.

Klein reached his height in terms of mathematical creativity at the University of
Leipzig. He started to work on automorphic functions and uniformization of Riemann
surfaces in competition with Poincaré. Poincaré was 4 years younger than Klein. In
1881, Klein was world famous, and Poincaré was an unknown young mathematician.

4It seems that some people confused Klein’s written report with his inaugural oral speech.
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But Poincaré quickly caught up and surpassed Klein. According to a letter written
from Paris to Klein [15], Lie wrote: “Poincaré said that at first it was hard for him to
read your work, but now it goes very easily. A number of mathematicians, such as
Darboux and Jordan, say that you make great demands on the reader in that you often
do not supply proofs.”

Poincaré made a steady and substantial progress which was difficult for Klein
to keep up with. Klein tried his best in order not to lose the competition. After
publishing his results in October 1882 on the uniformization of Riemann surfaces
of finite type, Klein collapsed and experienced depression. This uniformization the-
orem was a natural capping result for the earlier works of Klein and Poincaré on
Fuchsian groups and Kleinian groups. But Klein’s paper was only an announcement
with a sketch of ideas. In fact, it could not be completed without the much later work
of Brouwer on topology. Poincaré announced a similar result around the same time,
also without enough details. The uniformization theorem of Riemann surfaces was
eventually proved independently by Poincaré and Koebe in 1907.5

During Klein’s stay at Leipzig, he turned its mathematics department into a major
mathematics department in the world and he built a school of geometry. Realizing
that his research career was over, he started to think about ways to retain his role as
a head of an important mathematics school.

In 1886, the opportunity which Klein had been waiting for arose. He received an
offer from Göttingen and he accepted it immediately. It was an ideal position for him.
Göttingen had a famous tradition and was a leading university in Germany. Probably
more importantly, a comrade of his from the time he served the military dealt with
university appointments at the Ministry of Culture in Berlin. Since the Ministry had
a policy of strengthening science departments at Göttingen, Klein was able to build up
his power base at Göttingen. Eventually he did take advantage of these opportunities
and hired Hilbert. The rest is the well-known history, the legendary Göttingen school
of mathematics of Hilbert and Klein.

Of course, Göttingen had a long tradition of famous mathematicians before Klein’s
arrival. It started with the legendary Gauss, who studied, worked and taught there for
over 50 years. But Gauss was like an eighteenth century scholar. He did not write and
publish all his results, and did not incorporate his research into his teaching. In fact,
he almost never taught advanced mathematics courses (he only taught elementary as-
pects of mathematical astronomy). Instead, he preferred to carry out an extensive
scientific correspondence with a few friends and peers. The immediate successor of
Gauss was Dirichlet. Dirichlet was a great mathematician and a great teacher, and he
spent most of his academic career in Berlin. He died rather unexpectedly only three
years after he moved to Göttingen. The successor of Dirichlet was Riemann. But
Riemann had a poor health and took extended leaves in the sunny Northern Italy. Af-

5One dispute in the correspondence between Klein and Poincaré was concerned with the naming of Fuchsian
groups, which Klein felt was not fair. It is interesting to quote a letter from Lie to Klein [15] on this issue, when
Lie was visiting Paris: “Tell me when you get a chance whether Fuchs has answered your last remarks and, if so,
where, I have no doubts that the mathematical world will give the essential work you’ve done prior to Poincaré’s
discoveries its just due. With all of your students you have an army that represents a mighty force . . . ”
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ter his death in 1866, the natural academic successor was Dedekind.6 But Dedekind
was quiet and withdrawn, and did not interact much with others. He was not suitable
to maintain and develop the tradition of Göttingen. After him, Clebsch established
a major school in algebraic geometry in Göttingen, but only for a short period from
1868 to 1872. His unexpected death made this just one more flicker in the history
of Göttingen. Though Klein was the youngest member of the Clebsch circle, he
was the most dynamic and assumed much of the burden for developing further his
mentor’s research and publication programs. Göttingen remained quiet until the ar-
rival of Klein and Hilbert, and Klein was the man largely responsible for restoring
Göttingen’s glorious history.

It is perhaps helpful to point out that Klein and Hilbert formed a perfect pair
since they were so different and they complemented each other so well. Klein was
a worldly man and good at politics and enjoyed it, and Hilbert was a rather “simple”
man who was really (or only) interested in mathematics but did not care for power or
politics; Klein was formal and kept a distance with students and younger colleagues,
and Hilbert was casual and mingled with students and others as well. If both of them
were like Klein, there might not have been peace at Göttingen (or in the German
mathematics community) and Göttingen could not have been at the cutting edge of
mathematics and its interaction with physics; and if both were like Hilbert, they might
not have gotten things done and attracted people from all over the world, for example,
there might not have been the new idea of an open book mathematics library for
students or more chairs of mathematics in Göttingen.

Hilbert was an academic grandson of Klein, and it is interesting to see how the
relations between Klein and Hilbert evolved with time by quoting from the biography
of Hilbert by C. Reid. As mentioned before, Klein collapsed after his competition
with Poincaré on the uniformization of Riemann surfaces in 1882. Hilbert met Klein
in Leipzig in 1885 [13, p. 19]:

But the Klein whom Hilbert now met in Leipzig in 1885 was not his same dazzling
prodigy. . .

Hilbert attended Klein’s lectures and took part in a seminar. He could not have
avoided being impressed. Klein was a tall, handsome, dark haired and darken beard
man with shining eyes, whose mathematical lectures were universally admired and
circulated even as far as America. . .

As for Klein’s reaction to the young doctor from Königsberg – he carefully
preserved the Vortrag, or lecture, which Hilbert presented to the seminar and he
later said: “When I heard this Vortrag, I knew immediately that he was the coming
man in mathematics.”

In March 1886, Hilbert went to Paris on the recommendation of Klein [13, p. 22].

As soon as Hilbert was settled, he wrote to Klein. The letter shows how important
he considered the professor. It was carefully drafted out with great attention to the

6Though Dedekind received his Ph.D. and Habilitation in Göttingen, he never worked in Göttingen. Instead,
he was a professor in Zürich from 1858 to 1862, and then in Braunschweig for the rest of his life. One of his
major contributions to Göttingen mathematics was his substantial editing and publication of Dirichlet’s lecture
notes “Vorlesungen über Zahlentheorie”. In this sense, he was a major figure in Göttingen mathematics.
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proper, elegant wording, then copied over in a large, careful Roman script rather
than the Gothic which he continued to use in his letters to Hurwitz. . .

At the end of April, 1886, Klein wrote to Hilbert [13, p. 25]:

“Not as much about mathematics as I expected.” Klein commented disapprovingly
to Hilbert. He then proceeded to fire off half a dozen questions and comments which
had occurred to him while glancing through the most recent number of the Comptes
Rendus: “Who is Sparre? The so-called Theorem of Sparre is already in a Munich
dissertation (1878, I think). Who is Stieltjes? I have an interest in this man, I have
come across an earlier paper by Humbert – it would be very interesting if you could
check on the originality of his work (perhaps via Halphen?) and find out for me
a little more about his personality. It is strange that the geometry in the style of
Veronese–Segre happens to be coming back in fashion again . . . ”

“Hold it always before your eyes”, he admonished Hilbert, “that the opportunity
you have now will never come again.”

In December 1894, Klein wrote to Hilbert [13, p. 45]:

I want to inform you that I shall make every effort to see that no one other than you
is called here.

You are the man whom I need as my scientific complement because of the di-
rection of your work and the power of your mathematical thinking and the fact that
you are still in the middle of your productive years. I am counting on it that you
will give a new inner strength to the mathematical school here, which has grown
continuously and, as it seems, will grow even more — and that perhaps you will
even exercise a rejuvenating effect upon me . . .

I can’t know whether I will prevail in the faculty. I know even less whether the
offer will follow from Berlin as we propose it. But this one thing you must promise
me, even today: that you will not decline the call if you receive it!

Hilbert replied [13, p. 46]: “Without any doubt I would accept a call to Göttingen
with great joy and without hesitation.”

Klein had some reservation about working with Hilbert if Hilbert came [13, p. 46]:

As for Klein’s feelings –already it was clear that Hilbert questioned any authority,
personal or mathematical, and went his own way. . . When in the faculty meeting his
colleagues accused him of wanting merely a comfortable younger man, he replied,
“I have asked the most difficult person of all.”

Both Klein and Hilbert knew that the other party might not be easy to work with,
but they felt that it was beneficial for everyone. According to [13, p.46],

Hilbert worked very hard on his reply to Klein’s letter, crossing out and rewriting
extensively to get exactly the effect he wanted. . . .

“Your letter has surprised me in the happiest way,” he began. “It has opened up
a possibility for the realization of which I might have hoped at best in the distant
future and as the final goal of all my efforts [. . . ] Decisive for me above all would
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be the scientific stimulation which would come from you and the greater sphere of
influence and the glory of your university. Besides, it would be a fulfillment of mine
and my wife’s dearest wish to live in a smaller university town, particular one which
is so beautifully situated in Göttingen.”

Upon receiving this letter from Hilbert, Klein proceeded to plan out a campaign.
“I have already told Hurwitz that we will not propose him this time so that we

will be more successful in proposing you. We will call Minkowski in second place.
I have discussed this with Althoff [the person in the Ministry of Culture in charge of
faculty appointments.] and he thinks that that will make it easier then for Minkowski
to get your place in Königsberg.”

Within a week he was writing triumphantly to Hilbert:
“This has been just marvelous, much faster than I ever dared to hope it could

be. Please accept my heartiest welcome!”

6 As a teacher and educator

Throughout his life, Klein was always interested in education and teaching. In some
sense, he was more like a scholar than a research professor.

Klein was a very successful teacher after the initial difficult time at the University
of Erlangen and he perfected his lecture style in Göttingen. According to [13, p. 48],

Klein’s lectures were deservedly recognized as classic. It was his custom often to
arrive as much as an hour before the students in order to check the encyclopedic
list of references which he had had his assistant prepared. At the same time he
smoothed out any roughness of expression or thought which might still remain in
his manuscript. Before he began his lecture, he had mapped out in his mind an
arrangement of formulas, diagrams and citations. At the conclusion the board con-
tained a perfect summary of the presentation, every square inch being appropriately
filled and logically ordered.

It was Klein’s theory that students should work out proofs for themselves. He
gave them only a general sketch of the method. The result was that a student had to
spend at least four hours outside class for every hour spent in class if he wished to
master the material. Klein’s forte was the comprehensive view.

One of the assistants of Klein who later became rather famous was Sommerfeld.
For a detailed description of interaction between Klein and Sommerfeld, see [4].

Another successful aspect of his teaching is that he had 57 Ph.D. students. Some
became very distinguished mathematicians, such as Adolf Hurwitz, Ludwig Bieber-
bach, Maxime Bocher, Frank Cole, C. L. Ferdinand Lindemann (who proved the
transcendence of �), Alexander Ostrowski, and Axel Harnack (as in the Harnack
inequality). Many of his successful books were based on his lectures.

Klein wrote many books, especially later in his life after he stopped doing re-
search. We will describe in detail his book “Lectures on mathematics” [9] in � 9
below, and we briefly mention here several other great books:
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1. (joint with Robert Fricke) Vorlesungen über die Theorie der automorphen
Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die
funktionentheoretischen Ausführungen und die Andwendungen.

2. (joint with Robert Fricke) Vorlesungen über die Theorie der elliptischen Mo-
dulfunktionen. Band I: Grundlegung der Theorie. Band II: Fortbildung und
Anwendung der Theorie.

These four volume books were written with his student Fricke, based on Klein’s
lectures. They set the foundation for the modern theory of discrete subgroups
of Lie groups, arithmetic subgroups of algebraic groups and automorphic forms.
They are classical in the sense that people know that they are important, but few
people actually read them.

3. (joint with Arnold Sommerfeld) The theory of the top, 3 volumes.

In the 1890s, Klein turned to mathematical physics, a subject from which he had
never strayed far. These books were originally presented by Klein as an 1895 lecture
at Göttingen University that was broadened in scope and clarified as a result of his
collaboration with Sommerfeld. They are still in print and the standard references in
the subject.

After he left mathematics research, Klein started around 1900 to take an interest
in mathematical instruction in schools below college level. For example, in 1905, he
played a decisive role in formulating a plan which recommended that differential and
integral calculus and the function concept be taught in high schools. This recommen-
dation was gradually implemented in many countries around the world, and now this
is standard. This contribution of Klein is typical of him: they tend to be foundational
and natural retrospectively.

Klein contributed to the development of comprehensive mathematics courses for
teachers and engineers, strengthening the connection between mathematics and sci-
ences and engineering.

In 1908, Klein was elected chairman of the International Commission on Math-
ematical Instruction at the Rome International Congress of Mathematicians. Under
his guidance, the German branch of the Commission published many volumes on the
teaching of mathematics at all levels in Germany.

In 2000, The International Commission on Mathematical Instruction decided to
create the Felix Klein Award recognizing outstanding lifetime achievement in math-
ematics education research. According to the description of the award, it

serves not only to encourage the efforts of others, but also to contribute to the devel-
opment of high standards for the field through the public recognition of exemplars.

Klein also wrote several books for the general reader, high school students and
school teachers, for example, several volumes of Elementary Mathematics from an
Advanced Standpoint on Geometry, Arithmetic, Algebra and Analysis. These books
have been translated into several languages and are still in print.
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7 Main contributions to mathematics

To both mathematicians and physicists, the best known contribution of Klein is the
Erlangen program, which is not a concrete theorem or a theory, but rather a point of
view. But other mathematicians such as Lie worked to make it more substantial and
concrete.

Unlike most other great mathematicians, Klein’s contribution to mathematics can-
not be measured by theorems proved or conjectures solved.

But his contributions can be felt at various levels. They have become so much
a part of our mathematical thinking that it is sometimes hard for us to appreciate their
novelty.

The motivation for Klein to propose this grand program is to answer a simple
question: What is geometry? At that time, there were many different aspects of ge-
ometric studies such as Plücker’s line geometry, spherical geometry by the French
school, the hyperbolic geometry by Lobachevsky and Bolyai, elliptic geometry by
Riemann, projective geometry in the tradition of Cayley and Salmon, the birational
geometry of Riemann and Clebsch, the work of Grassmann on the geometry of vector
spaces, the synthetic approach to the foundations of geometry by von Staudt, Lie’s
work on contact transformations and their applications to systems of partial differ-
ential equations, etc. Klein wanted to extract the common and basic principle of all
these works.

According to Klein, the answer is that geometry is the study of invariants of sym-
metry (or transformation) groups. This is the essential point of the Erlangen program
he proposed in 1872. For example, the elliptic, hyperbolic and parabolic geometries
correspond to different subgroups of the group of projective transformations, and
hence they are related to each other by viewing them through projective geometry.

This important particular conclusion was reached by Klein before he proposed
the Erlangen program. In 1871, he published two papers titled Ueber die sogenan-
nte Nicht-Euklidische Geometrie (On the So-called Non-Euclidean Geometry) which
showed that Euclidean and non-Euclidean geometries could be considered as special
cases of the projective geometry. This gave a new proof of the fact that non-Euclidean
geometry is consistent if and only if Euclidean geometry is, thus putting Euclidean
and non-Euclidean geometries on the same footing, and helping end all controversy
surrounding non-Euclidean geometry. See the commentary [1] in this volume. This
work made Klein famous and secured his job at the University of Erlangen. If one
wants to name a single important theorem of Klein, this might be it. But it should
be pointed out that even in this case, he made essential use of the work of Cayley.
Therefore, this model of the hyperbolic plane is often called the Cayley–Klein, or the
Beltrami–Cayley–Klein model, because Beltrami also worked it out.

The Erlangen program was not widely known in the first two decades after it
was written and was only available as a booklet. It was finally published in 1893 in
the leading journal, Mathematische Annalen. An authorized English translation was
published in [11].

In the meantime, others including Poincaré arrived at similar ideas. In a letter
from Paris to Klein in the early 1880s [15], Lie wrote: “Poincaré mentioned on one
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occasion that all mathematics is a matter of groups. I told him of your Erlangen
program, which he did not know about.”

Lie and his school actually worked on the Erlangen program and made clear the
role of groups as the great unifying principle of twentieth century mathematics, which
was not clear to Klein in the original program.

The impact of the Erlangen program, or rather its point of view, was huge and
included many branches of mathematics and sciences.

In the narrow sense, the Erlangen program considers homogeneous manifolds. In
the broad sense, it emphasizes the importance of understanding invariants under au-
tomorphism groups. For example, for Riemannian manifolds, we need to understand
invariants (both local and global) under isometries. For differentiable manifolds, we
search for invariants under diffeomorphisms. And for topological manifolds, we can
study invariants under either homeomorphisms or homotopy equivalences. For ex-
ample, homotopy groups, homology and cohomology groups of topological spaces
can be considered as such invariants. A similar principle applies to other sciences, in
particular physics.

Besides the Erlangen program, Klein’s work on Fuchsian groups, Kleinian groups
and automorphic functions, his emphasis on the connection between mathematics and
physics is still of huge current interest. This can be seen by many recent results on
three-dimensional hyperbolic manifolds. Another result which might not be so well-
known is that the modern notion of manifold which was introduced by Herman Weyl
in a book on Riemann surfaces was motivated by Klein’s work and his point of view
on Riemann surfaces in his book “On Riemann’s Theory of Algebraic Functions and
their Integrals.”

According to an article on Klein by Burau and Schoeneberg [3] in the Dictionary
of Scientific Biography,

Klein considered his work in function theory to be the summit of his work in math-
ematics. He owed some of his greatest successes to his development of Riemann’s
ideas and to the intimate alliance he forged between the later and the conception of
invariant theory, of number theory and algebra, of group theory, and of multidimen-
sional geometry and the theory of differential equations, especially in his own fields,
elliptic modular functions and automorphic functions.

This assessment of Klein’s work is consistent with that in Reid’s biography of
Hilbert [13, p. 19]: Klein had

a strong drive to break down barriers between pure and applied science. His mathe-
matical interest was all-inclusive. Geometry, number theory, group theory, invariant
theory, algebra – all had been combined for his master work, the development and
completion of the great Riemannian ideas on geometric function theory. The crown
of this work had been his theory of automorphic functions.

For a more systematic and chronological summary of the work of Klein, see [5].
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8 The Evanston Colloquium Lectures
and the resulting book

Klein wrote many books at different levels and on different topics. Perhaps one book
which reflects best his broad knowledge of mathematics and his perspective on the
importance of mathematical topics is his book Lectures on mathematics, a survey of
mathematics in the previous quarter of a century. It is still in print and can serve as
a good model for surveys in mathematics.

This book was closely connected to the International Mathematical Congress or-
ganized in conjunction with the World’s Fair: the Columbian Exposition in 1893 in
Chicago.

This International Mathematical Congress in Chicago [2] was a major event and 4
years ahead of the first International Congress of Mathematicians held in 1897 in Zurich.
It acted as a harbinger of a new era of international cooperation in mathematics.

Klein’s book Lectures on mathematics consisted of the lecture notes on his two
week long Evanston Colloquium Lectures which he gave at Northwestern University
right after the congress. We need to view this book in the context of the fair and the
status of mathematics in the USA at that time.

The World’s Columbian Exposition was to celebrate the 400th anniversary of
Christopher Columbus’s arrival in the New World in 1492. Chicago won over New
York City, Washington D. C., and St. Louis the honor of hosting this special fair.
The fair had a profound effect on architecture, arts, Chicago’s self-image, and Amer-
ican industrial optimism. For the mathematical community, the International Mathe-
matical Congress in Chicago and the lectures of Klein represented the beginning of
emergence of American mathematics.

Klein had been waiting for 10 years for a good opportunity to visit and give
lectures in the USA, and the Columbia exposition finally gave him a chance. The
Evanston Colloquium Lectures were highlights of his visit.

According to an arrangement with the Prussian Ministry of Culture, Klein would
attend the International Mathematical Congress as an official representative of his
government. Klein viewed mathematics as a great chance for the German Reich
to demonstrate its growing dominance and also as a golden opportunity for him to
solidify his position (or reputation) as a leading mathematician in Germany.

Besides his talk at the Congress, he also offered to give a two-week long lecture
series at Northwestern University in Evanston after the Congress. The enthusiasm of
the local organizers can be clearly seen from the letter from Henry White of North-
western University to Klein [12, p. 306]:

your scheme for a comprehensive survey of recent mathematics is the most useful,
though not the least onerous. If you have strength to carry it out, it will be in every
way a worthy contribution to a noble object.

E. H. Moore of Chicago University wrote to Klein [12, p. 306]:

you cannot easily understand, or rather imagine, how much pleasure your two letters
brought to me personally and to all of us interested in the success of the Congress.
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We are deeply grateful to you and your government [. . . ] As to the September Col-
loquium: I esteem it a great privilege to be one of the circle of those to profit by the
inspiration of your leadership through the domains of modern mathematics.

The importance of the Mathematics Congress and the Evanston Colloquium could
not be over estimated for mathematicians in the Chicago area. They provided a unique
opportunity to put Midwestern mathematics on the map. (Note that the traditional
institutions of higher learning of USA were located on the East Coast.)

On the first day of the Congress, Klein launched upon a sweeping survey of mod-
ern mathematics titled “The Present State of Mathematics” [10], which reflected very
much his philosophical point of view:

When we contemplate the development of mathematics in this nineteenth century,
we find something similar to what has taken place in other sciences. The famous
investigators of the preceding period, Lagrange, Laplace, Gauss, were each great
enough to embrace all branches of mathematics and its applications. In particular,
astronomy and mathematics were in their time regarded as inseparable.

With the succeeding generation, however, the tendency to specialization mani-
fests itself. Not unworthy are the names of its early representatives: Abel, Jacobi,
Galois and the great geometers from Poncelet on, and not inconsiderable are their
individual achievements. But the developing science departs at the same time more
and more from its original scope and purpose and threatens to sacrifice its earlier
unity and to split into diverse branches.

He also pointed out that

the attention bestowed upon it by the general scientific public diminishes. It became
almost the custom to regard modern mathematical speculation as something having
no general interest or importance, and the proposal has often been made that, at least
for purpose of instruction, all results be formulated from the same standpoints as in
the earlier period. Such conditions were unquestionably to be regretted.

Then he continued:

This is a picture of the past. I wish on the present occasion to state and to emphasize
that in the last two decades a marked improvement from within has asserted itself
in our science, with constantly increasing success [. . . ]. This unifying tendency,
originally purely theoretical, comes in envitably to extend to the applications of
mathematics in other sciences, and on the other hand is sustained and reinforced in
the development and extension of these latter.

Klein also emphasized the importance of the team work and cooperation:

Speaking, as I do, under the influence of our Göttingen tradition, and dominated
somewhat, perhaps, by the great name of Gauss, I may be pardoned if I character-
ize the tendency that has been outlined in these remarks as a return to the general
Gaussian programme. A distinction between the present and the earlier period lies
evidently in this: that what was formerly begun by a single mastermind, we now
must seek to accomplish by united efforts and cooperation.
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All these comments made more than 100 years ago are still valid and require the
attention of all mathematicians.

When Klein talked about the internal unity of mathematics, the basis comes from
the concept of group and the notion of analytic functions of complex variables. To
show the usefulness of mathematics in sciences, one example he gave was the ap-
plication of group theory to the classification of crystallographic structures, which
had been studied by various people many years earlier but were only completed by
Federov and Schoenflies in 1880s. On the last day of the Congress, Klein also gave
a lecture titled “Concerning the Development of the Theory of Groups during the Last
Twenty Years.”

The Mathematics Congress started on August 21 and ended on August 26, and
the Evanston Colloquium Lectures by Klein started on August 28. It was much more
than a usual mathematics lecture series. These lectures were Klein’s first serious at-
tempt to sketch an overview of some major trends in mathematics. Lectures of such
nature would have appeared presumptuous to the German mathematics community,
and would also have clashed with elitist ideals of Wissenschaft,7 which rejected any-
thing related to popularization. Because of all these factors, Klein chose to deliver
his “Lectures on Mathematics” outside Germany.

These lectures gave an overview of the major development of mathematics and of
some of the principal mathematicians in the proceeding 25 years. They were full of
strong opinions and novel insights of a highly influencing mathematician, and Klein
was the ideal person to give such lectures at an ideal place and time. Klein rarely
presented even slightly complicated arguments in his lectures and almost always fo-
cused on the big picture of a theory and interconnection between different subjects.
The Evanston lectures were especially so. Even for people who had studied with
Klein earlier in Göttingen, these lectures were a new experience.

For 12 days, Klein delivered one lecture on each day. He spoke slowly in English
and posed questions to the audience as he went along. Each lecture was followed
by lengthy informal discussion. This book “Lectures on Mathematics” was based
on the lecture notes by Alexander Ziwet, the chair of the mathematics department
at the University of Michigan. They were revised later by Ziwet together Klein for
publication in January 1894. This book probably gives a rather condensed record of
what Klein said in his lectures, and it is not clear how much, or if any, of the topics
discussed at the informal discussions was incorporated into the book.8 Klein said
himself that this book by itself gives no sense of the atmosphere on this historical
occasion. But it is probably the best approximation to listening to a lecture by such
a master speaker.

7Wissenschaft is the German word for any study or science that involves systematic research and teaching.
It implies that knowledge is a dynamic process discoverable for oneself, rather than something that is handed
down, hence the popularization in the form of superficial survey is against its spirit. Wissenschaft was the
official ideology of German Universities during the nineteenth century. It emphasized the unity of teaching and
individual research or discovery for the student. It suggests that education is a process of growing and becoming.

8Ziwet explained in the preface that “in reading the lectures here published, it should be kept in mind that
they followed immediately upon the adjournment of the Chicago meeting, and were addressed to members of
the Congress. This circumstance, in addition to the limited time and the informal character of the colloquium,
must account for the incompleteness with which the various subjects are treated.”
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9 A summary of the book “Lectures on mathematics”
and Klein’s conflicts with Lie

This book “Lectures on mathematics” was published in 1894, almost 120 years ago,
and mathematics now is very different from mathematics at that time. In some sense,
this book characterizes Klein’s perspective towards mathematics: a global vision and
interconnections between different subjects of mathematics.

A natural question is why should one read it now. Or maybe a better question is
how should one read it.

Some obvious answers include (1) we can read it to understand an overview of the
mathematics written 120 years ago, and to understand how mathematics has evolved
and new results and theories arose. Unlike any other subject, mathematics has a strong
historical continuity: what was considered important in the past is also important and
relevant now. Thus many topics discussed by Klein are still relevant and important
today; (2) we can learn from Klein on how to study and understand mathematics, and
how to take a global approach to it.

A good answer to the question is contained in a preface written by William Os-
good for a reprint of this book in 1910 [9]:

To reproduce after a lapse of seventeen years lectures which at the time they were
delivered were in such close contact with the most recent work of that day, may well
call for a word of justification. Has mathematics not advanced since then, and are the
questions here treated of the first importance at the present time? I reply by asking:
What is important in the development of mathematics? Is it solely the attainment
of new results of potential value, or must not an essential part of the best scientific
efforts of each age be devoted to possessing itself of the heritage of the age that has
just preceeded it?

[. . . ] at a time when the contributions of the immediate past were so rich and
so unrelated, Klein was able to uncover the essential bonds that connect them and to
discern the fields to whose development the new methods were best adapted.

His instinct for that which is vital in mathematics is sure, and the light with
which his treatment illumines the problems here considered may well serve as a guide
for the youth who is approaching the study of the problems of a later day.

Though this is not a book to learn systematically some classical mathematics, its
informal style allows one to understand mathematics from a different perspective.
Given that this book was written by such a major figure of the nineteenth century
mathematics community, a master speaker and writer, we can learn from him on how
to pick out good mathematics, and how to understand some histories and stories be-
hind mathematics, i.e., the book is an eyewitness account from an active participant
during that period. One may wonder about the experience of attending Klein’s lec-
tures. This book probably gives one a bit of flavor. Naturally, there are many other
things or advices which we can learn from Klein via this book. For example, page af-
ter page, Klein used concrete examples to show the importance of geometric intuition
and interconnections between different subjects.
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We now briefly comment on the content of this book and point out some special
features along the way.

Klein started the lectures by classifying mathematicians into three categories:
(1) logicians, (2) formalists, and (3) intuitionists.

This is rather different from another current popular classification: theory builders
and problem solvers.

He devoted his first lecture to Clebsch, the eminent geometer whom we already
mentioned and his mentor who greatly influenced his academic life. It is interesting
to see how he evaluated his respected teacher:

However great the achievement of Clebsch’s in making the work of Riemann more
easy of access to his contemporaries, it is my opinion that at the present time the
book of Clebsch is no longer to be considered the standard work for an introduction
to the study of Abelian functions. The chief objections to Clebsch’s presentation are
twofold: they can be briefly characterized as a lack of mathematical rigor on the one
hand, and a loss of intuitiveness, of geometrical perspicuity, on the other.

One point Klein emphasized here is the important role played by Anschauung,
which is basically geometrical intuition, or rather direct or immediate intuition or
perception of sense data with little or no rational interpretation. It is also interesting
to note that Klein puts Clebsch into both categories (2) and (3).

One important mathematical reason for which Klein was critical of Clebsch is
that Klein believed in Riemann’s original intuitive approach to the theory of Abelian
integrals, but the Clebsch school used an algebraic approach in order to put Riemann’s
work on the rigorous foundation. Klein wrote,

For these reasons, it seems to me best to begin the theory of Abelian functions with
Riemann’s ideas, without, however, neglecting to give later the purely algebraic de-
velopments.

Such comments and points can be applied to many other subjects and problems in
modern mathematics.

As mentioned before, besides Clebsch, there were two other people, Plücker and
Lie, who greatly influenced Klein. The second and third lectures were devoted to
Lie and his work. Klein used Lie’s early work on geometry and the theory of par-
tial differential equations as examples of how great mathematics can emerge through
intuition and unconscious inspiration rather than only complicated computation. His
other important advice was to read the original papers, instead of the final books:

To fully understand the mathematical genius of Sophus Lie, one must not turn to the
books recently published by him in collaboration with Dr. Engel [Theorie der trans-
formationgruppen, the third volume of which was about to appear], but to his earlier
memoirs, written during the first years of his scientific career. There Lie shows him-
self the true geometer that he is, while in his later publications, finding that he was
but imperfectly understood by the mathematicians accustomed to the analytical point
of view, he adopted a very general analytical form of treatment that was not always
easy to follow. Fortunately, I had the advantage of becoming intimately acquainted
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with Lie’s ideas at a very early period, when they were still, as the chemists say, in
the “nascent state,” and thus most effective in producing a strong reaction.

Though the first three lectures concentrated on the work of Clebsch and Lie, other
mathematicians and their works were also mentioned. For example, Plücker’s work
on line geometry was mentioned in connection with the work of Lie.

Lecture 4 is a good example of some classical mathematics which is still impor-
tant and poorly understood. Algebraic curves and algebraic surfaces over the complex
numbers are now fairly well understood, but real algebraic curves and algebraic sur-
faces are still less known and poorly understood, not because of lack of motivation,
but rather due to lack of techniques and methods.

Klein’s fifth lecture on hypergeometric functions is relatively short and sketchy.
The sixth lecture of Klein is probably the best known of all 12 lectures. Intuition
was always important to Klein and had been emphasized by him at many occasions.
He started with a discussion of two kinds of intuition: naive and refined intuition, and
their roles in developing mathematical theories:

the naive intuition is not exact, while the refined intuition is not properly intuition at
all, but arises through the logical development from axioms considered as perfectly
exact.

He used historical examples to illustrate his point. For example, Klein considered
Euclid’s Elements as a prototype of refined intuition, while the work of Newton and
other pioneers of the differential and integral calculus resulting from naive intuition.
Klein wrote:

It is the latter that we find in Euclid; he carefully develops his system on the basis of
well-formulated axioms, is fully conscious of the necessity of exact proofs, clearly
distinguishes between the commensurable and incommensurable, and so forth.

The naive intuition, on the other hand, was especially active during the period
of the genesis of the differential and integral calculus. Thus we see that Newton
assumes without hesitation the existence, in every case, of a velocity in a moving
point, without troubling himself whether there might not be continuous functions
having no derivative.

Klein continued:

this is the traditional view – that it is possible finally to discard intuition entirely,
basing the whole science on the axioms alone. I am of the opinion that, certainly,
for the purposes of research it is always necessary to combine the intuition with the
axioms. I do not believe, for instance, that it would have been possible to derive the
results discussed in my former lectures, the splendid researches of Lie, the continuity
of the shape of algebraic curves and surfaces, or the most general forms of triangle,
without the constant use of geometrical intuition.

This comment of Klein reminds us of the Bourbaki axiomatic approach to math-
ematics. Of course, Bourbaki has had a definite impact on modern mathematics, but
it has also drawn many criticisms and has failed to achieve its goal.
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Related to these two kinds of intuition, there is the difficulty in teaching mathe-
matics. Klein wrote:

a practical difficulty presents itself in the teaching of mathematics [. . . ] The teacher
is confronted with the problem of harmonizing two opposite and almost contra-
dictory requirements. On the one hand, he has to consider the limited and as yet
undeveloped intellectual grasp of his students and the fact that most of them study
mathematics mainly with a view to the practical applications; on the other hand, his
conscientiousness as a teacher and man of science would seem to compel him to
detract in nowise from perfect mathematical rigor and therefore to introduce from
the beginning all the refinements and niceties of modern abstract mathematics.

After the more philosophical 6th lecture, Klein turned to the transcendence of e and
� . He started the seventh lecture with: “Last Saturday we discussed inexact math-
ematics: today we shall speak of the most exact branch of mathematical science.”
After Hermite proved the transcendence of e in 1873, Lindemann developed further
the method of Hermite to prove transcendence of � in 1882. This fact is probably
well-known to most mathematicians, but many people may not know that Lindemann
was a former student of Klein. Klein wrote:

The proof that � is a transcendental number will forever make an epoch in math-
ematical science. It gives a final answer to the problem of squaring the circle and
settles this vexed question once for all. . . . . The proof of the transcendence of � will
hardly diminish the number of circle-squarers, however; for this class of people has
always shown an absolute distrust of mathematicians and contempt for mathematics
that cannot be overcome by any amount of demonstration.

Klein’s statement and explanation were to the point. They are still very relevant and
true today.

The eighth lecture continued Klein’s tour of number theory to emphasize his
point that geometric methods are important in number theory.

The ninth lecture is concerned with solutions of higher algebraic equations. Ev-
eryone is familiar with the formula for solutions of quadratic algebraic equations and
knows that there is no analogous algebraic formula for general algebraic equations
of degree 5 or higher. This lecture gives a good summary of algebraic equations of
higher degree. Klein started with:

All equations whose solutions cannot be expressed by radicals were classified simply
as insoluble, although it is well-known that the Galois groups belonging to such
equations may be very different in character.

He continued: “The solution of an equation will, in the present lecture, be regarded
as consisting in its reduction to certain algebraic normal equations.” The rest of
the lecture is to explain this point by several examples, in particular, the icosahedron
equation.

The tenth lecture dealt with hyperelliptic and abelian functions, an important
subject which had been intensively studied by many people. Klein started with: “The
subject of hyperelliptic and Abelian functions is of such vast dimensions that it would
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be impossible to embrace it in its whole extent in one lecture.” Later in the same
lecture, Klein wrote:

Here, as elsewhere, there seems to resign a certain pre-established harmony in the
development of mathematics, what is required in one line of research being supplied
by another line, so that there appears to be a logical necessity in this, independent of
our individual disposition.

This sets the tone of the eleventh lecture on “The most recent researches in non-
Euclidean geometry.” As mentioned before, Lie had a great influence on Klein, and
the cooperation and friendship between Lie and Klein were beneficial. For exam-
ple, it was Klein who got the chair in geometry at Leipzig for Lie after Klein left
Leipzig for Göttingen. But the great friendship fell apart in 1892, and the climax was
a sentence Lie put in the third volume of his monumental book Theorie der Transfor-
mationsgruppen: “I am not a student of Klein, nor is the opposite the case, even if it
perhaps comes closer to the truth.”

This was an amazing statement, considering that Klein was the dominating figure
in the German mathematics community. There were many reasons for this breakup.

One reason was that Klein finally published the booklet “The Erlangen program”
in the leading journal “Mathematische Annalen” in 1892. When Klein asked Lie
about the idea of republishing it around 1892, Lie said that it was a good idea since
he regarded it as Klein’s most important work from the 1872 period and felt that
it could be better understood and appreciated in 1892 than it was first circulated as
a booklet in 1872. Klein tried to include some of his joint work and Lie’s work in the
revision, and Lie thought that Klein took more credit than he deserved. There is some
truth in it (see [8] for some discussion on this point) and there are also other reasons
for the breakup.

A few years before that, Lie felt that several people, in particular Wilhelm Killing,
had used his ideas without giving him credit. In the early 1890s, Klein crossed the
line and became an enemy of Lie in Lie’s mind. When Klein published a paper on
non-Euclidean geometry and a set of lecture notes, he did not mention some of Lie’s
results, which Lie believed were important applications of his theory of transforma-
tions groups.

In the Evanston Colloquium Lectures, Klein was trying to make up the situation in
some sense. This might also explain why Klein devoted the second and third lectures
together with a substantial part of the eleventh lecture to Lie and his work. Klein
wrote:

I have the more pleasure in placing before you the results of Lie’s investigations as
they are not taken into due account in my paper on the foundations of projective ge-
ometry [. . . ] in 1890 nor in my (lithographed) lectures on non-Euclidean geometry
delivered at Göttingen in 1889–1890.

These efforts of Klein did not have immediate effects on Lie. Shortly after the
Evanston Colloquium Lectures, Lie wrote to Adolf Mayer [12, p. 351] and compared
Klein to

an actress, who in her youth dazzled the public with glamorous beauty but who grad-
ually relied on ever more dubious means to attain success on third-rate stages [which
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should be interpreted as the Mathematical Congress in Chicago and the Evanston
Colloquium Lectures].

The relation between Klein and Lie was complicated. Though Klein was younger
than Lie, in their interaction and academic careers, Klein always played the role of
a senior friend.

Their breakup was finally made up. In 1894 in the Russian city of Kazan, an
international prize was set up to commemorate the great geometer Lobachevsky. The
prize was to be awarded to geometric research, particularly in the development of
non-Euclidean geometry. In 1897 Klein was asked by the prize committee to write
a report on Lie’s work, which helped Lie to receive the award in 1897, the first time
this prize was given. In his report, Klein emphasized Lie’s contribution in the third
volume of Theorie der Transformationsgruppen, and Klein’s report was published in
the Mathematische Annalen one year later.

In 1898, Lie wrote to Klein and thanked him for the report. This was the first
letter since their breakup in 1892. Lie also told Klein that he had resigned from his
chair at Leipzig and would return to Norway soon. Unfortunately, Lie died shortly
after he went back to Norway.

The final reconciliation between Lie and Klein was vividly described by a letter
of Klein’s wife written many years after the incident [18, p. xix]:

One summer evening, as we came home from an excursion, there, in front of our
door, sat the pale sick man. ‘Lie!’ we cried, in joyful surprise. The two friends
shook hands, looked into one another’s eyes, all that had passed since their last
meeting was forgotten. Lie stayed with us one day, the dear friend, and yet changed.
I cannot think of him and of his tragic fate without emotion. Soon after he died, but
not until the great mathematician had been received in Norway like a king.

The conflict between Klein and Lie was natural in some ways but also very com-
plicated and rather unfortunate. Similar things had happened before and after them
and will continue to happen. Fortunately, it ended with a good reconciliation. For
some related discussions and more details on this conflict, see [8] in this volume.

After discussing Lie’s work, Klein moved to the classification of spaces which are
locally the same as the Euclidean space and spaces of positive curvature. The work
of Clifford was mentioned. The problem of classifying Clifford–Klein space forms is
still not completely solved today.

The last lecture has a rather unusual title “The study of Mathematics in Göttingen.”
This should be understood in the context that at that time, almost every capable Amer-
ican student wanted to go to study in Göttingen, in particular to become a student of
Klein. Klein started with “In this last lecture I should like to make some general re-
marks on the way in which the study of mathematics is organized at the university of
Göttingen, with particular reference to what may be of interest to American students.”
One advice he gave was

Would he not do better to spend first a year or two in one of the larger American
universities? Here he would find more readily the transition to specialized studies,
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and might, at the same time, arrive at a clearer judgement of his own mathematical
ability: this would save him from the severe disappointment that might result from
his going to Germany.

These comments make one wonder if they can be applied to students who want to
go to study abroad now, and I am thinking especially of students from China.

The comments of Klein on his Göttingen lectures also applied to the Evanston
Colloquium Lectures:

my higher lectures have frequently an encyclopedic character, comfortably to the
general tendency of my programme. [. . . ] My lectures may then serve to form the
wider background on which [. . . ] special studies are projected. It is in this way, I
believe, that my lectures will prove of the greatest benefit.

Time has shown that Klein’s Evanstan Colloquium Lectures have greatly influ-
enced the rising of the American mathematical community.

10 The ambitious encyclopedia in mathematics

As briefly discussed before, Klein wrote many books, several of which are substantial.
But his most ambitious plan was to edit an encyclopedia of mathematical sci-

ences. In 1894 he launched the idea of an encyclopedia of mathematics including its
applications, which became the Encyklopädie der mathematischen Wissenschaften.
According to [18, p. xiii],

The Enzyklopädie was, from Klein’s point of view, an effort to render accessible to
his pupils, to himself, and to the mathematical public at large, the bulk of existing
mathematics. One day in the ’90’s the concept of the Enzyklopädie was formulated
by Klein in the presence of the writer: the progress of mathematics, he said, using
a favourite metaphor, was like the erection of a great tower; sometimes the growth in
height is evident, sometimes it remains apparently stationary; those are the periods
of general revision, when the advance, though invisible from the outside, is still real,
consisting in underpinning and strengthening. And he suggested that such was the
then period. What he meant, he concluded, is a general view of the state of the
edifice as it exists at present.

The first volume was published in 1898, and the last volume was published in
1933. Its total length for the six volumes is over 20000 pages, and it provided an
important standard reference of enduring value. It is a pity that it appeared only in
German and French editions and did not continue.

Klein’s former student Walther von Dyck was the chair of the editorial board and
did much of the actual work. He explained the mission of this huge project [17]: “The
mission was to present a simple and concise exposition, as complete as possible, of
the body of contemporary mathematics and its consequences, while indicating with
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a detailed bibliography the historical development of mathematical methods from the
beginning of the nineteenth century.”

But Klein was deeply involved in the global plan and design of the whole project.
Because of this, it is also called “Klein’s encyclopedia.”

In view of Klein’s perspective on mathematics, this seems to have been a befitting
final project for him and is beneficial to the whole mathematics community.

11 Klein’s death and his tomb

Klein was always full of energy. Even during the last two years of his life, when he
laid almost helpless, he never complained and remained clear to the end, working and
correcting proof-sheets. At half past eight on the evening of June 22, 1925, Klein
died painlessly at the age of 75, a honorable and kingly death.

After Klein died in June 1925, Hilbert said in a speech in the next morning [13,
p. 178]:

But the event after it happened touched us all deeply and affected us painfully. Up
until yesterday Felix Klein was still with us, we could pay him a visit, we could get
his advice, we could see how highly interested he was in us. But that is now all over.

According to C. Reid [13, p. 178],

Everything they saw around them in Göttingen was the work of Klein, the collec-
tion of mathematical models in the adjoining corridor, the Lesesimmer with all the
books on open shelves, the numerous technical institutes that had grown up around
the University, the easy relation they had with the education ministry, the many im-
portant people from business and industry who were interested in them . . . They had
lost a “great spirit, a strong will, and a noble character.”

An era had come to an end.

Courant said [14, p. 179],

Many who knew him only as an organizer [. . . ] found him too harsh and violent, so
he produced much opposition to his ideas [. . . ] which a gentler hand would easily
have overcome.

On the other hand, according to C. Reid [14, p. 179],

Yet his nearest relatives and colleagues and the great majority of his students had
known always that behind the relentlessly naive drive, a good human being stood.

In his life, Klein always appeared as a formal, stern and efficient German profes-
sor. This formality and people’s respect towards him can also be seen on his tomb
stone. The inscription on the stone includes “Felix Klein, A Friend, Sincere and Con-
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stant”,9 and was well-arranged and filled the whole stone. His tomb is close to the
Chapel of the huge cemetery in Göttingen, a rather important spot there.

12 Major mathematicians and mathematics results
in 1943–1993 from Klein’s perspective

More than 100 years ago, Klein gave 12 lectures to summarize the status of mathe-
matics at that time, or more precisely an overview of the major mathematicians and
their main contributions in the previous 25 years. One might ask the following ques-
tion: if Klein had given another series of lectures in 1993 (one hundred years later)
on the most important achievements in mathematics in the previous half century, i.e.,
from 1943 to 1993, what mathematicians and mathematical results would he have
discussed?

Probably one thing is clear: twelve lectures would not be enough. There have
been many more people doing mathematics research in the twentieth century that the
few mathematicians at several universities in Europe in the ninteenth century.

From the above description of Klein’s life and work, it seems that he would value
mathematical works that shed new lights on interconnections between different sub-
jects, that contribute globally to multiple subjects, open up new fields and generate
new problems and results, but might not emphasize some isolated theorems or solu-
tions of major conjectures which kill the subjects. It is tempting to conjecture that
Klein might talk about the following mathematicians, their works and related sub-
jects:

1. Marston Morse (1892–1977). He is best known for his work on the calculus of
variations in the large, in particular Morse theory, which is a fundamental tool
in topology and geometry. Though Morse theory was the underlying theme of
his work, he was very productive and made many substantial contributions to
related topics.

2. Carl Siegel (1896–1981). He worked in and made fundamental contributions to
both number theory and celestial mechanics. His work in number theory (both
analytic and algebraic) and automorphic forms in multiple variables had far
reaching consequences in analytic number theory, arithmetic number theory,
and the theory of arithmetic subgroups. His contribution in celestial mechanics
is also both broad and deep.

3. Andrey Nikolaevich Kolmogorov (1903–1987). He made essential contribu-
tions to many fields such as probability theory, topology, intuitionistic logic,
turbulence, classical mechanics and computational complexity. Without his
work, probability theory will not be like it is now. Besides his work on proba-
bility, KAM theory is one of the many deep theories he developed.

9This inscription is quoted from [13, p. 179]. On the actual tomb stone, the words “Felix Klein, A Friend”
are not there. Maybe C. Reid wanted to emphasize the friendly aspect of the stern Klein.



54 Lizhen Ji

4. André Weil (1906–1998). He did foundational work in number theory, arith-
metic algebraic geometry, algebraic geometry and differential geometry. For
example, the foundation of algebraic geometry, the Chern–Weil theory, and
abelian varieties are some of his many deep contributions, which cover a broad
range of topics such as topology, differential geometry, complex analytic ge-
ometry and Lie theories. The Weil conjecture has had a huge impact on modern
mathematics, in particular arithmetic algebraic geometry. He is also one of the
founding fathers, maybe the leader, of the Bourbaki group.

5. Jean Leray (1906–1998). He made foundational contributions to both partial
differential equations and algebraic topology, and he combined methods from
these seemingly different subjects to solve difficult problems. He is probably
most famous for his introduction and work on sheave theories, and spectral
sequences.

6. Hassler Whitney (1907–1989). He is one of the founders of singularity theory,
and did foundational work in differential topology such as embeddings and in
algebraic topology and differential geometry such as characteristic classes.

7. Lev Semenovich Pontryagin (1908–1988). He made major discoveries in many
subjects such as topological groups and analysis on topological groups, alge-
braic topology (in particular characteristic classes) and differential topology
such as cobordism theory. He also made important contributions to differential
equations and control theory.

8. Claude Chevalley (1909–1984). He was a highly original and cultured person
and he made important contributions to number theory, algebraic geometry,
class field theory, finite group theory, and algebraic groups. Basic notions
he introduced include Chevelley groups with spectacular applications to finite
simple groups and adeles, which are basic in modern number theory. His books
on Lie theories have had a huge impact.

9. Shiing-Shen Chern (1911–2004). He was regarded as one of the leaders in
global differential geometry, which emerged as a major theory in the 20th cen-
tury. His work covered all the classic fields of differential geometry and was
most famous for the Chern–Weil theory and Chern classes, which are widely
used in modern mathematics.

10. Oswald Teichmüller (1913–1943). Though he died at the age of 30, and some
of his papers were published in 1944 in a famous (or infamous) Nazi journal
and hence were relatively unknown, he introduced quasiconformal mappings
and differential geometric methods into complex analysis and solved the prob-
lem of moduli asked by Riemann. The idea of rigidifying moduli problems
and the resulting Teichmüller theory has had a long lasting impact on many
subjects ranging from algebraic geometry to low-dimensional topology.

11. Israel Moiseevich Gelfand (1913–2009). He made major contributions to many
branches of mathematics, including group theory, representation theory of non-
compact Lie groups, differential equations, functional analysis, and applied
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mathematics. He also educated and inspired generations of students through
his legendary seminar at Moscow State University.

12. Kunihiko Kodaira (1915–1997). He made fundamental contributions in alge-
braic geometry and complex geometry such as the Kodaira embedding the-
orem, Hodge theory, the deformation theory of complex manifolds, and the
classification of algebraic surfaces.

13. Kiyoshi Ito (1915–2008). He made fundamental contribution to stochastic pro-
cesses. His theory is called Ito calculus and is widely applied in various fields,
in particular in financial mathematics.

14. Jean-Pierre Serre (1926–). He has made fundamental contributions to the fields
of algebraic topology (such as Serre spectral sequence), algebraic geometry
(such as GAGA and sheaf theory), number theory and several other fields such
as homological algebra and combinatorial group theory. His many books also
have educated many people around the world and are models of exposition.

15. Alexandre Grothendieck (1928–2014). He was the central figure behind the
creation of the modern theory of algebraic geometry and also made major con-
tributions to many subjects such as functional analysis. In some sense, the
language and landscape of mathematics changed after his work. His general-
ization of the classical Riemann–Roch theorem launched the study of algebraic
and topological K-theory and also played an important role in general index
theory, and his discovery of `-adic étale cohomology was the key tool in the
proof of the Weil conjectures, completed by his student Pierre Deligne.

16. John Nash (1928–). He made highly original and fundamental contributions
to game theory, differential geometry and partial differential equations such as
the De Giorgi–Nash–Moser theorem and the Nash embedding theorem.

17. Michael Atiyah (1929–). He laid the foundations for topological K-theory and
index theories. In particular together with Singer he proved the Atiyah–Singer
index theorem, which has been widely used in both mathematics and physics.
He also made many fundamental contributions towards interaction between
geometry and analysis.

18. Goro Shimura (1930–). He made important and extensive contributions to
arithmetical geometry and automorphic forms. One key concept is the one
of a Shimura variety, which is the higher-dimensional equivalent of modular
curve and plays an important role in the Langlands program. He also made
the important Taniyama–Shimura conjecture on modularity of elliptic curves
and contributed substantially to various topics in arithmetical geometry and
automorphic forms.

19. John Willard Milnor (1931–). He did pioneering work in topology by prov-
ing the existence of exotic differential structures on 7-dimensional spheres.
This made people realize the subtle difference between smooth and topological
structures and had a huge influence on differential topology. His other works
on K-theory, Milnor fibration and his multiple books also have had great im-
pacts on mathematics.
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20. Robert Langlands (1936–). He made fundamental contributions to automor-
phic forms and representation theory, which has had a major effect on number
theory. He proposed a collection of far-reaching and influential conjectures,
called the Langlands program, that relate Galois groups in algebraic number
theory to automorphic forms and representation theory of algebraic groups over
local fields and adeles.

21. Jacques Tits (1930–). His best known work is the theory of Tits buildings, nat-
ural spaces for algebraic groups. It has unexpected far reaching consequences
that arose in a broad range of subjects. In some sense, he made the Erlan-
gen program concrete for algebraic groups, in particular exceptional algebraic
groups over all fields.

22. William Thurston (1946–2012). He was highly original and made fundamental
contributions to the study of 3-manifolds. His work and perspective completely
changed the landscape of 3-dimensional topology through his geometrization
conjecture.

23. Mikhail Leonidovich Gromov (1943–). He is probably known as the mathe-
matician with the largest number of ideas. He made original and important
contributions in many different areas of mathematics including differerential
geometry, coarse geometry, differential equations, symplectic geometry and
geometric group theory.

24. Gregori Aleksandrovich Margulis (1946–). He made fundamental and highly
original contributions to structure properties and applications of lattices in
semisimple Lie groups, and initiated the approach of using ergodic theory
to solve diophantine problems in number theory and questions in combina-
torics and measure theory. The Erlangen program is mainly concerned with
Lie groups, and Margulis showed the importance of discrete subgroups of Lie
groups in many contexts.

25. Shing-Tung Yau (1949–). He was one of the first persons who combined differ-
ential equations and geometry, and efficiently used analysis to solve outstand-
ing problems in algebraic geometry, differential geometry, low dimensional
topology, mathematical physics such as general relativity and string theory.
His lists of problems have had major impact on the broad areas of mathematics
related to geometry and analysis.

26. Edward Witten (1951–). He made contributions in mathematics and helped
bridge gaps between fundamental physics and other areas of mathematics. For
example, he gave a simple proof of the positive mass conjecture using the
idea of supersymmetry, and interpreted Morse theory, elliptic genus and other
fundamental results in mathematics via supersymmetry. Using his physics in-
tuition, Witten also provided many stimulating problems and conjectures for
generations of mathematicians. Klein always liked physics and emphasized
the importance of the interaction between mathematics and physics.
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1 Introduction

Klein’s Erlangen Programme1 is one of the best known papers on mathematics writ-
ten in the 19th century. Or, rather, it is one of handful of books and papers from
the century that people still mention today, whether they have read it or not. The
chapter will describe the fundamental ideas in the Programme and their significance,
and then consider how the young Felix Klein came to those ideas by building on an
influence not often considered: the synthetic projective geometry of von Staudt. It
will only briefly discuss the impact of the Erlangen Programme on later work, which
is entangled in complicated ways with the work of Sophus Lie, Henri Poincaré, and
others.

2 The Erlangen Programme

The Erlangen Programme is the name given to a paper Klein circulated on the occa-
sion of his appointment as a Professor at the University of Erlangen in 1872 under
the title of “A comparative review of recent researches in geometry.” Inevitably, his
presentation of his ideas fell far short of modern standards of precision. It also be-
longs to the genre of programmes or manifestos rather than research papers, and like
those today it makes claims about what can be done without providing much detail.

1The programme has many names, because Erlangen is the name of the place, Erlanger is the genitive of the
name, and Programme has an English and American spelling (Program). Some authors quoted in this chapter
refer to it as the E. P.
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It seems best, therefore, to present it in a summary that sticks close to the original and
only later to offer some modern comments.

The Programme opens with the claim that projective geometry now occupies the
first place among advances in geometry, having incorporated metrical geometry, so
that it can be said that projective geometry embraces the whole of geometry. The
viewpoint that unified these two can be extended to include other geometries, such
as inversive geometry and birational geometry, Klein went on, and it seems advisable
to do so because (p. 216) “geometry, which is after all one in substance, has been
only too much broken up in the course of its recent rapid development into a series
of almost distinct theories.”2 The essential idea, said Klein, was that of a group of
space-transformations. This he defined merely as a collection of transformations of
a space to itself that is closed under composition. Only in the English translation
of 1893 did he add that one should further specify the existence of the inverse of
every transformation. He then directed attention to those transformations that leave
the geometric properties of configurations unaltered.

For geometric properties are, from their very idea, independent of the position occu-
pied in space by the configuration in question, of its absolute magnitude, and finally
of the sense [today we would say, orientation] in which its parts are arranged. The
properties of a configuration remain therefore unchanged by any motions of space,
by transformation into similar configurations, by transformation into symmetrical
configurations with regard to a plane (reflection), as well as by any combination
of these transformations. The totality of all these transformations we designate as
the principal group of space-transformations; geometric properties are not changed
by the transformations of the principal group. And, conversely, geometric proper-
ties are characterized by their remaining invariant under the transformations of the
principal group. (p. 218, italics in original.)

Klein was clear that each transformation was to be understood as a map of the
space to itself, not as a map of one figure to another that in some way left the space
fixed. This marked an important shift in the focus of attention in geometry. Previ-
ously there had been figures to study, which to be sure were in a space, and these
figures could be studied by transforming them to others of the same kind if the prob-
lem permitted. In this way projective geometry commended itself because any non-
degenerate conic could be replaced by a circle, which usually simplified the problem
considerably. In Klein’s view there was a space, and a transformation group. The
group picked out the figures, and any part of the space was to be treated on a par with
all of its transformations.

Klein then passed from space to the consideration of any ‘manifoldness’, as he
called it, and set out

the following comprehensive problem: Given a manifoldness and a group of trans-
formations of the same; to investigate the configurations belonging to the manifold-
ness with regard to such properties as are not altered by the transformations of the
group. (p. 218)

2For convenience, all quotations are taken from the English translation by M. W. Haskell and published as
[21]. Klein was scrupulous in noting later amendments to the original publication.
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Or, as he promptly rephrased it (p. 219, italics in original): “Given a manifold-
ness and a group of transformations of the same; to develop the theory of invariants
relating to that group.” This is the redefinition of geometry that is the first defining
feature of the Erlangen Programme.

Klein next argued that one may proceed by adding to the list of configurations,
in which case the group that keeps them invariant will generally be smaller than the
principal group, or conversely one may seek to enlarge the group, in which case the
class of invariant configurations will generally shrink. Metrical considerations are
introduced in projective geometry by adding a requirement that all configurations are
considered with respect to a fundamental one (for example, a conic, which becomes
the points at infinity in the metrical space). Klein also noted that if one wishes to
include duality as a fundamental feature of projective geometry and the transforma-
tions that exchange a figure and one of its duals then points and lines must both be
considered as space elements.

The second defining feature of the Erlangen Programme is less often remembered,
but it is the idea of isomorphic group actions, or, as Klein put it, the idea that if
a geometry is given as a manifoldness A investigated with respect to a group B and
in some way A is converted into a manifoldness (Klein was very vague here) A0 then
the group B can be regarded as a group B 0 that gives A0 a geometry. In this spirit,
Klein asked his readers to consider the space of binary forms. This can be regarded as
the geometry on a straight line with the group of linear transformations – we would
say the geometry of the projective line with the group of Möbius transformations.
The projective line is in a one-to-one correspondence with a conic, and the group
now becomes the group mapping this conic to itself, and so the geometry of points
on a conic can be used to import geometrical ideas into the study of binary forms.

Considerations of this kind led Klein to discuss what he called Hesse’s principle
of transference. In this process the group is held fixed but allowed to act on different
spaces. Klein gave the example of the group of Möbius transformations just men-
tioned now acting on the set of point-pairs on a conic. Each point-pair defines a line
in the projective plane, and so the group now acts on the projective plane with the
line considered as space-element. Then, because projective geometry with respect to
a conic is identical with projective metrical geometry, Klein concluded that the theory
of binary forms and the plane projective metrical geometry are the same. Here Klein
referred to his second paper on non-Euclidean geometry that was about to appear
[18].

Klein now explained how inversive geometry fitted into this framework. He said
that this was a geometry not known to German mathematicians, but that reflected his
youthful ignorance rather than a historical reality. Then he gave a longer exposition
of some of Lie’s ideas about sphere geometry, which he related to inversive geome-
try. Then he turned to the group of rational transformations of space and the group of
birational transformations of a curve on surface in space. He commented very briefly
on how analysis situs would fit into the framework, which he defined very loosely as
being concerned with all transformations that create infinitesimal distortions, and on
the group of all point transformations, by which he meant transformations that are
linear on infinitesimal neighborhoods. After that came the groups of contact trans-
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formations that Lie had studied. He gave the example of contact transformations of
three-dimensional space, so the group acts on the space of quintuples x; y; z; p; q,
where p D @z

@x
and q D @z

@y
and the expression dz � pdx � qdy D 0 is preserved.

The intended application of this theory, said Klein, was the classification of surfaces
defined either by a first-order partial differential equation or by a system of such
equations. Another way the Programme could be used, he said, was in the study of
manifoldnesses of constant curvature.

Klein concluded with some remarks about how this approach to geometry would
necessarily be coordinate-free, and would therefore be in line with the contemporary
theory of invariants in algebra and even more with the “so-called” Galois theory of
equations as recently presented by Serret and Jordan. There, as here, the primary
object of study was the group. The manifesto ended with a series of seven notes
amplifying various points made in the earlier sections. Of these the fifth prudently
attempted to head off any philosophical objection to talk of non-Euclidean geometry
by making the account here entirely mathematical, although it was also, he said, in his
view “an indispensable prerequisite to every philosophical discussion of the subject.”
The seventh discussed the geometry of binary cubics and quartics from the new point
of view.

2.1 Comments Klein did not pause to define what he meant by a manifoldness.
He may well have had Riemann’s vague and general concept in mind [27], which is
usually glossed as some sort of differentiable manifold, possibly of infinite dimen-
sion, usually with a metric of some kind. He almost certainly only had in mind what
we would regard as a limited range of examples, but they were novel in his day, and
these are the spaces obtained from real projective space of some dimension by form-
ing for example the set of all lines, or all conics, or all cubic curves in that projective
space. Thus the space of all conics in the plane forms a five-dimensional space in
which each plane conic is referred to a space-element. On the other hand, there is no
reason to restrict Klein’s ideas to groups acting on manifolds in the modern sense of
the term.

The fundamental idea of the Erlangen Programme is usually taken to be that a ge-
ometry consists of a space and a group acting on that space. From this point of view
it is often contrasted with, for example, the many Riemannian geometries that admit
only a trivial group of isometries. In this spirit is then observed that a lot of the work
of Élie Cartan and Hermann Weyl can be seen, and was presented, as an attempt to
extend the Erlangen Programme to this more general setting. Klein’s aims were rather
different. There were two: the unification of all geometry within projective geometry
and the wish to extend the scope of geometrical thinking.

Klein’s main example is that of projective geometry and the way the metrical
geometries, most importantly non-Euclidean geometry, fit in as special cases obtained
by passing to a subgroup of the projective group. Klein was explicitly concerned to
unify geometry by connecting all the examples he knew to projective geometry, which
can be regarded as the mother geometry. Curiously, at this stage he was unaware of
Möbius’s affine geometry, which would have fitted very well into his presentation.
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The remarks about analysis situs or topology and the group of all point transfor-
mations of a space fit in must be regarded as typical of these grand manifestos. They
are strikingly poorly defined, but that was all that could reasonably be said given the
mathematics of the day, and quite without any hint of a potential pay-off.

What Klein obviously saw much more clearly was how, on his definition of ge-
ometry, geometrical ways of thinking could be brought to bear on topics hitherto
regarded as exclusively algebraic. This was to be a leitmotif for Klein: all his life
he advocated casting one’s ideas in geometrical form as a test of one’s understanding
and as a way to find new results and better proofs of old ones. Writing in 1923 about
his hopes on taking up a professorship in Leipzig in 1880, he said (Klein 1923c, 20):

I did not conceive of the word geometry one-sidedly as the subject of objects in
space, but rather as a way of thinking that can be applied with profit in all domains
of mathematics.

His own work frequently demonstrated this point of view, never more so that his
work on subgroups of the modular group [19] and in his book on the icosahedron
[20].

3 From von Staudt to Klein

The circumstances surrounding the production of the Erlangen Programme are well
known and can be described briefly. Felix Klein had gone to the University of Bonn
in 1865 at the age of sixteen and a half intending to study physics under Plücker,
but he found that Plücker had switched back to the study of geometry, and so he
began to work on line geometry in 1871. When Plücker died unexpectedly the next
year, Klein was persuaded by Clebsch that only he knew enough to see the second
volume of Plücker’s study of line geometry into print, and in this way Klein was
catapulted into the ranks of research mathematicians without, as he later noted, ever
having taken a course in the integral calculus. He was also enabled by Clebsch, he
believed, to apply for and obtain a Professorship at the University of Erlangen where
von Staudt had worked all his life, and he went there in 1872 – he found it backward
and dormant. He gave an inaugural address on his arrival there, which, as Rowe has
pointed out, was on mathematics education and is not the Erlangen Programme.3 The
famous programme was distributed as a pamphlet on the day, mailed to a number of
universities in Europe, and very likely sat forgotten on library shelves for some years
thereafter.

Klein was not, after all, very well-known. There was doubtless a ripple of aware-
ness that somebody had become a Professor at the strikingly young age of 23, but it
was in a small, sleepy university. He had understandably very few publications to his
name, including some joint papers with his older friend the Norwegian mathemati-
cian Sophus Lie, and he had made a brief visit to Paris in 1870 to see Camille Jordan

3 See [28] and [29].
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that had been cut short by the outbreak of the Franco–Prussian war. But the other
trip outside Bonn had been a failure: a painful sojourn to Berlin where he had not
impressed Weierstrass and Kummer and had in fact laid the foundations of a lifelong
hostility between himself and the elite of the older generation of German mathemati-
cians.

His time in Berlin was worthwhile not only because that was where he had met
Lie for the first time, and made common cause with him over geometry, which they
felt was neglected in Berlin, but because there he had become friends with Otto Stolz.
Stolz was seven years older than Klein, and was able to fill in some of the gaps in
the younger man’s severely compressed education. In particular, he told him of the
work of Bolyai and Lobachevsky, and of the work of von Staudt. Klein already knew
of Cayley’s opinion that “descriptive geometry is all geometry” – that is to say, that
projective geometry is all geometry, and he formed the idea, against the opposition of
Weierstrass, that non-Euclidean geometry had to fit in there too.

The two papers that Klein wrote on the “so-called non-Euclidean geometry” of
1871 and 1873 in fact do a better job than the Erlangen Programme at explaining how
the new, metrical geometry fits into projective geometry, and they remain the clearest
example of what he had in mind. These papers are described in full detail in the paper
“On Klein’s so-called non-Euclidean geometry” by Norbert A’Campo and Athanase
Papadopoulos in this volume [1], but it will be helpful to comment on them briefly
here. The paper [16] describes non-Euclidean geometry as a space which is mapped
to itself by a group. The space is the interior of a non-degenerate conic in the plane,
and the group is the group of all projective transformations of the plane that map this
space to itself. There is an evident notion of a straight line in this space, namely that
part of a projective line that lies in the space, and Klein showed how to equip the space
with a metric that made the transformations of this geometry into isometries. In this
way, non-Euclidean geometry was exhibited as a geometry on a subset of projective
space with a transformation group that is a subgroup of the group of projective. In
short: non-Euclidean geometry is a sub-geometry of projective geometry – and that
is the theme of the Erlangen Programme. His paper [18] extends these arguments to
describe non-Euclidean geometry in any number of dimensions.

Put this way, the full novelty of the Erlangen Programme may not be apparent.
The idea that a geometry is a space with a group acting on it and that the geometric
properties of the space are those that are invariant under the action of the group was
not exactly new. Many geometers would have agreed that they studied Euclidean or
projective space, and non-Euclidean geometry was accepted by mathematicians as
legitimate – but not by philosophers, which is why Klein called it the ‘so-called’ non-
Euclidean geometry. Mathematicians would also have agreed that one can transform
figures in various ways, and indeed that there are different sorts of transformations
for different purposes. Plane geometry, for example, admits Euclidean isometries,
similarities, and affine transformations, as well as projective ones.

Klein did not propose a wholesale admission of new spaces, indeed he was ex-
clusively concerned with spaces that are subspaces of projective space picked out by
suitable subgroups of the projective group. But the clarity with which he asserted that
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geometry – any geometry – simply is a space and a group action on that space was
new.

Klein had picked up the group concept either from his own reading or from talk-
ing to Sophus Lie. Clebsch had also underlined its importance, and Jordan thanked
Clebsch for helping him with finding the groups of various geometric figures in his
Traité [15] of 1870. And of course Klein had gone to Paris with a view to learning
more about group theory from Jordan. Klein took the group concept to mean what
we would call a transformation group rather than an abstract group, and indeed it was
not even that, because he saw no need in 1872 to specify the existence of inverses for
every element.

The concept of a transformation group gave him the first clear way to resolve the
well-known nagging doubt about the definition of cross-ratio in projective geometry.
Recall that the usual definition of the cross-ratio of four pointsA;B;C;D on a line is
AB:CD=AD:CB . But projective transformations do not preserve length, so how can
it be claimed that the cross-ratio is the quotient of two products of lengths? A similar
problem arises if one defines the cross-ratio of four lines through a point in terms of
the sines of the angles between the lines.

Klein’s answer was clear. Consider briefly how lengths are introduced in Eu-
clidean geometry. We start with some primitive concepts, such as that of the straight
line. We then consider only those transformations that map line segments to line seg-
ments and indeed cannot map a line segment onto a proper subset of itself. We now
have a suitable candidate to be the unit of length: an arbitrary but fixed line segment
AB . Familiar elementary constructions now allow us to replicate the segment indefi-
nitely along the line ` that it defines, and to divide it into any number of equal parts,
so we are now able to measure lengths along the line that are rational multiples of
the unit length. We appeal to the continuity of distance to obtain arbitrary distances
along the line `, and then we can measure the length of any line segment in the plane
by moving it so that one end point coincides with A and the segment now lies along
`. We can also move the unit segment so that one of its end points is in an arbitrary
position in the plane, and so that it points in any direction, so we can, for example,
choose the perpendicular to ` throughA and a direction on that line. We are now also
in a position to define a rectangular coordinate grid on the plane. Experts will recog-
nize the various axioms that have to be satisfied before this process can be carried out
rigorously ([10] is the best modern guide) but this brief account exhibits the salient
features we want.

We must have some primitive figures that are mapped to others of the same kind
by all the transformations we consider, and in the case of Euclidean geometry this
includes the point pair and the idea that a point pair defines a line segment and a line.
We require that the transformations are transitive on points and lines, but not point
pairs. Klein’s insight was that an exactly similar argument involving quadruples of
collinear points and transformations that can map any triple of collinear points to any
triple of collinear points but is not transitive on quadruples will suffice to define the
cross-ratio of a quadruple of points.

Klein learned this insight from von Staudt.
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4 Von Staudt

Georg Karl Christian von Staudt is often called the Euclid of synthetic projective
geometry, and like his distinguished predecessor he is hard to read. He did at least
provide a short Foreword to his Geometrie der Lage [31] in which he observed that it
had become appropriate to distinguish between the geometry of position and metric
geometry on the grounds that in the former there are theorems that do not involve
quantities but only ratios. He had therefore sought to give the geometry of position
independent foundations and to give an account of those properties of second-order
curves and surfaces that can be treated in that spirit. He noted that although every
geometry book must start from general considerations most got down too soon to
details about the congruence and similarity of triangles and did not deal with several
other ideas with the corresponding generality.4

He began his own account with the statement that geometry is about an unbounded
space, which he took to be three-dimensional. A body is a bounded region of space;
bodies are divided by surfaces, surfaces by curves, and lines by points, and the point
is indivisible. Every surface has two sides, as does every line in a surface and every
point in a line. Bodies, surfaces, lines and points are called geometric figures. Three
points A;B;C on a closed curve will be traversed either in the order A;B;C or
A;C;B . Three points on a curve that does not intersect itself form a pair of outer
points separated by one in the middle, and they divide the line into four segments.
And so he went on, making statements that we can mostly rescue and some that we
must regard as axioms.

The primitive elements in this geometry are the point and the straight line.
A straight line, he said, may be called a ray (Strahl) and is divided by any point on
it into two half rays. The useful concepts are that of a pencil of rays (Strahlbündel),
which is made up of all the rays through a point, and a pencil of half rays (all the half
lines emanating from a point). But von Staudt went on to define many other figures,
including conic sections, in ways that did not, even covertly, rely on the concept of
distance. He proved a number of fundamental theorems, for example that if a straight
line passes through two points of a plane then it lies entirely in the plane, and that
if a plane meets a line not lying in the plane in a point then it meets it only in that
point, which can be called the trace of the line in the plane or of the plane in the
line. Properties of planes and pencils of rays followed, for example, that a pencil of
rays contains infinitely many planes, and every plane that has a ray in common with
a pencil of rays defines a plane pencil.

In �5 von Staudt introduced infinitely distant elements. Von Staudt said two
straight lines that lie in the same plane and do not meet are mutually parallel, and
he claimed that through any point not lying on a given line there is a parallel line.
Given three planes that meet in three lines, the lines either meet in a point or are
mutually parallel. Two planes that do not meet are said to be parallel. Von Staudt
noted that in many cases it was possible to define a point given a pencil of lines, and
so by extension one could speak of an infinitely distant point as the common point

4I give a minimalist account of von Staudt’s two books here, which were much more rich and general than I
shall describe. For a much fuller account, see [25].
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of a pencil of parallel lines. In this way every line is endowed with a unique point at
infinity, in each plane there is a line of point at infinity and the collection of all points
at infinity may be said to form a plane at infinity.

Two basic figures are said to be related if their elements are in a one-to-one corre-
spondence, and the simplest way in which a straight line s and a plane pencil whose
axis does not cut the given straight line can be related is if one considers the straight
line as a cut of the plane pencil. Two pencils of rays can then be related if they are
cuts of the same plane pencil. Such a relation von Staudt called a perspective relation,
and he extended it to included pencils of parallel rays and pencils of parallel planes.
This allowed him to consider that there was only one kind of pencil of rays (or of
planes)

In �6 von Staudt turned to a discussion of reciprocity or duality. In space, he said,
a point and a plane can be interchanged, and every theorem that does not distinguish
between proper and improper elements remains valid when this is done. He listed
a number of simple examples of this in a two-column format, including statements
about pencils. In �7 came a definition of a perspectivity, and a proof of Desargues’
theorem and its dual, which uses only incidence considerations because von Staudt
was working in three dimensions.

In �8 the idea of a harmonic figure is introduced, via the construction of the fourth
harmonic point to three points on a line. In �9 the idea of a projective transformation is
introduced: one figure is the projective transform of another figure if every harmonic
figure in the one corresponds to a harmonic figure in the other. Such figures are said
to be homologous (von Staudt also introduced the symbol N̂ for this relationship).
Figures related by a perspectivity are projectively related. Duality is admitted, so
four points in a line are projectively related to four concurrent lines through the four
points. The so-called fundamental theorem of projective geometry was then proved,
which states that a projective transformation of a line to another line is determined
when it is known on three points, and a projective transformation of a plane to another
plane is determined when it is known on four points (no three of which are collinear).5

Two figures are said (p. 118) by von Staudt to be involution if any two homologous
points P and P1 are such that the homology exchangesP and P1. We would say that
an involution is a transformation of period 2.

Any reading of von Staudt’s Geometrie der Lage would show that its author aimed
at two things: generality (his arguments apply without change to a variety of figures)
and independence of metrical or other extraneous considerations. Nowhere is this
latter consideration more apparent than in the way he consigned his remarks about
distance to an appendix of the book. This opens with the remark (p. 203):

Just as affinity is a special case of a linear transformation, so is similarity a special
case of affinity and congruence a special case of similarity. In similar systems two
homologous angles, and in congruent systems two homologous are equal to each
other. Two projectively related lines are similar when the infinitely distant points

5Here we should note that von Staudt’s argument was insufficient, and the role of continuity needed to be
further elucidated, as it was by Darboux and Klein in the early 1870s. See [7] and, in more detail, [30].
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on each line correspond. If in addition any finite segment of one line is equal to its
corresponding segment on the other, then the figures are congruent.

There then followed a detailed account of how the familiar metrical theory of
conic sections can be introduced into projective geometry by astute use of the concept
of a midpoint and of involutions.

The same attention to generality and autonomy characterize the second of von
Staudt’s accounts of projective geometry, the Beiträge zur Geometrie der Lage [32],
published in three parts in 1856 and 1857. This is notable for the introduction of
imaginary elements – not, it must be said, in a way that yields complex coordinates6 –
and of the calculus of throws (Würfe). This enabled von Staudt to associate numerical
values to such projective figures as four points on a line or four lines through a point,
and ultimately to introduce coordinates into projective geometry.7

A configuration of four collinear points von Staudt called a throw. He distin-
guished three degenerate cases: ABCA and BAAC he assigned the symbol 0 to; to
ABCB and BABC he assigned the symbol 1; and to ABCC and CCAB he as-
signed the symbol 1. At this point in the account these symbols are meaningless.
He then developed a theory covering the addition and multiplication of throws, and
then defined a way of associating a real number to a throw. In keeping with the phi-
losophy he had followed in the Geometrie der Lage, von Staudt put these numerical
considerations in an appendix at the end of Book II of the Beiträge zur Geometrie der
Lage.

The numerical value of a throw depends on an arbitrary constant assigned to an
arbitrary segment. Once this choice has been made, the value of a throw is the same
for all throws homologous to the given one. Moreover, the value map is a homomor-
phism (in more modern terms): the value of a sum of two throws is the sum of the
values of the throws, and the value of a product of two throws is the product of the
values of the throws. Von Staudt then showed how to introduce metrical coordinates
into projective space, in such a way that specific pairs of points are a distance 0, 1,
or1 apart. Something like this had also been outlined by Möbius in terms of what
are today called Möbius nets, but von Staudt’s treatment was more general and more
rigorous. Even so, it was not sufficiently rigorous, as Lüroth was to show in 1875.
A fair assessment of von Staudt’s presentation of projective geometry would be that it
is incomplete, and much is needed to be done here and there to make it a satisfactory
account of real projective geometry from an axiomatic point of view, but that it is one
of those accounts of a subject good enough to require only repair, not replacement.

What Klein saw in von Staudt’s presentation of geometry, allowing for the fact
that in several places it needed to be improved, was an autonomous account of pro-
jective geometry. It was defined with all the rigor of any other branch of mathematics
at the time, and it did not rely on Euclidean geometry in any way. The fundamen-
tal operations were certain transformations: involutions and homologies. And quite
clearly, metrical, Euclidean geometry was derived as a special case. It remained for

6For an account of the fascinating ways in which complex algebraic quantities were interpreted, often in
terms of the existence of fixed-point free involutions, see [3].

7For a recent account, see the treatment in [25].
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him to fit non-Euclidean geometry into this framework, and here he was lucky: non-
Euclidean geometry fits in more easily that Euclidean geometry. His account could
be easier than von Staudt’s treatment of Euclidean geometry, and he could achieve
something new in the study of an exciting new geometry.

5 The influence of the Erlangen Programme

An extensive historical literature on the Erlangen Programme culminated in two con-
trasting papers some twenty years ago. Birkhoff and Bennett [2] who gave a strongly
positive assessment of its influence, and Hawkins [11],8 who, as they noted “chal-
lenged these assessments”, pointing out that from 1872 to 1890 the E. P. had a very
limited circulation; that it was “Lie, not Klein” who developed the theory of continu-
ous groups; that “there is no evidence . . . that Poincaré ever studied the Programm;”
that Killing’s classification of Lie algebras (later “perfected by Cartan”) bears little
relation to the E. P.; and that Study, “the foremost contributor to . . . geometry in
the sense of the Erlanger Programm, . . . had a strained and distant relationship with
Klein.”

Birkhoff and Bennett’s argument came in two parts. First, they traced the in-
fluences on Klein, dwelling on the contributions of Plücker and Clebsch who were
decisive in promoting Klein’s interest in geometry and noting without further com-
ment the work of von Staudt. They note the intimate connections between Klein and
Lie, and they hint at ways in which Klein could have picked up an appreciation of the
idea of a group. And then they make the grand claim that

in 1872, the E. P. was 20 years ahead of its time; it would take at least that long for
the new perspective of Klein and Lie to gain general acceptance.

The second part of their paper is an attempt to assess its influence. Since there
is no doubt that the Erlangen Programme owed a lot to discussions with Lie, it is
right to say that it presents the perspective of Klein and Lie. It is much harder to sort
out the influence of the Programme over the subsequent 20 years, and ascribe this
part to Klein and that to Lie. The problem is, of course, the steady, and ultimately
monumental, build-up of Lie’s ideas, and their reworking by Killing, Cartan, and
others, and the extent to which this has anything to do with the ideas in the E. P.
Birkhoff and Bennett made the astute observation that the message of the E. P. is the
way groups act on spaces – it outlines, as they say, a global approach to geometry –
whereas Lie’s work is overwhelmingly a local theory. So they turn to look at Klein’s
later work to see how he drew his own lessons, and they observe that Klein was to
write extensively on discontinuous groups in the setting of automorphic functions and
non-Euclidean geometry (the famous collaboration and competition with Poincaré)
and, after his nervous breakdown, on the icosahedron.

8One can add Hawkins’ monumental book [12] on Lie’s theory.
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Birkhoff and Bennett then note that in the 1880s and still more in the 1890s Klein
rose to become the major figure in mathematics in Germany. He positioned himself
well to capitalize on the decline of the centre in Berlin, and on reaching Göttingen
he made a succession of brilliant hirings that quickly created the leading place for
mathematics in the world. They suggest that this amplified his influence: the E. P.
was, as it were, the seed of much of Klein’s later work, it and the later work inspired
others, and the more Klein’s stock rose the more attractive his ideas came to be. As
they note, their view is in line with the opinions of Max Noether [26] in his obituary
of Lie, and Klein’s obituarist and successor Richard Courant in [4].

The problem with this account is its naivety. There is no doubt that Klein had
a major influence on mathematics, in particular by being a huge force in Göttingen.
He actively promoted the geometrical point of view on many topics, and can be re-
garded as more of a geometer than an analyst or an algebraist. But a closer look at
his career shows how much the Göttingen tradition, which he did so much to create
in his historical writings, has colored how he is regarded today.

Klein himself said that his research career was brought to a halt by his nervous
breakdown and that he never recovered completely: “the centre of my productive
thought was, so to speak, destroyed” (see Klein 1923a, 585). The book on the Icosa-
hedron [20] was part of his recovery programme, and thereafter he preferred to col-
laborate with younger men who, for their part, were happy to take up Klein’s good
ideas and make them work. But it is not clear, for example, if the four volumes he
was to write with Fricke on automorphic functions were very influential, and they
are not mentioned by Birkhoff and Bennett. More significantly, in the second half of
the 1870s Klein had set himself the task of understanding and advancing the work of
Riemann. This was not at all a body of ideas informed by group-theoretic ideas, nor
was it projective in spirit. Riemann’s ideas about geometry are metrical, deeply tied
to topics in complex function theory, and topological. And what is quite clear is that
by 1880, when Poincaré emerged on the scene to threaten Klein’s rise to the position
as the leading mathematician of his generation, Klein still had not fully appreciated
what Riemann had been saying.9

Klein’s major papers in the years 1878–1881 are best exemplified by his paper
[19], in which he discussed the geometry associated with the group PSL.2I 7/. He
did find a Riemann surface associated to it, and in true Riemannian spirit he found
a way to express it as an algebraic curve, but his take on it was then informed by
his appreciation of the fundamental status of projective geometry. In Klein’s view,
the curve was a branched covering of the Riemann sphere. Poincaré, on the other
hand, had little interest in projective geometry, and emphasized the differential geo-
metric side of the story; in his view the curve was a quotient of the non-Euclidean
disc. Klein moved fast. He came to the idea of the uniformization theorem before
Poincaré, helped no doubt by his better understanding of the Riemannian moduli of
an algebraic curve, but with every step he took he was moving away from the stand-

9In fact, it is hard to say what was Klein’s greatest contribution to mathematics, because nothing he wrote
has the status of a masterpiece, a work that changed the subject and did not merely add to it. This may be one
reason why the influence of the Erlangen Programme is over-estimated, because it is asked to stand in for the
great work on groups and geometry that Klein never wrote.
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point he had adopted in the E. P. Equally, Poincaré’s way of approaching this topic
makes it very clear that he had not been influenced by the E. P. If he had not picked up
the importance of groups in his education at the École Polytechnique, or from his own
reading, then the most likely influence is Helmholtz’s writings on geometry, which
stressed the possibility that non-Euclidean geometry could not only be formally the
correct description of physical space, but a geometry we could live and experience
very much as we (think we) live and experience Euclidean geometry.10

It does not seem to me that Birkhoff and Bennett did enough to dislodge Hawkins’
key point, (p. 463), that the view that it can be meaningfully regarded as one of the
most significant and influential documents in the history of mathematics circa 1872
to 1922 is overly simplistic and essentially unhistorical. Since mathematicians tend
to respect priority, the Erlanger Programm was pinpointed as the source of the group
theoretic study of geometry, but it should be clear from what has been presented
here that such a view, if interpreted as a historical statement of influence, ignores
the contributions of Lie and his school. That would be a serious mistake since, as we
have seen, no significant development of the ideas of the Erlanger Programm occurred
without the involvement of the ideas and results of Lie and his school.

As Hawkins went on to document at length in his book [12], it was Lie’s appre-
ciation of the importance of thinking about groups that resulted in a body of work
that transformed the whole domain of mathematics, particularly but not only the sub-
jects of differential equations and geometry. Hawkins rightly added that ([11], 463),
it would, of course, be equally simplistic and unhistorical to deny to the Erlanger
Programm any significance or influence. To mention just one example, the E. P. was
much appreciated by Corrado Segre and in due course by his student Fano (see ([12],
251)). But there can be little doubt that the reputation of the E. P., and its existence in
at least six translations into other languages, owes more to the importance of Klein in
the 1890s than to the impact of the E. P. itself.

In his criticisms of Birkhoff and Bennett, Hawkins often referred to the idea that
mathematics is a kind of collage, and ideas occur and are taken up in contexts. This
is a much more productive way to view the Erlangen Programme. Throughout the
19th century mathematicians had been finding groups and group actions in different
domains in mathematics. The earliest significant occurrence may be in Gauss’s Dis-
quisitiones arithmeticae [6] in his work on the composition of forms. A powerful
expression of the idea came up in Galois’s memoirs, although they took a long time
to be understood, but quite certainly they were understood and promoted by Jordan
in his memoir on groups of motions [13], his paper on Galois theory [14], and his
major book the Traité des Substitutions et des Équations Algébriques [15]. The use
of transformations in various branches of geometry was ubiquitous, the systematic
application of transformations (in the form of changes of variable) in the study of
differential equations did not begin with Lie, although he took it to new depths of
insight and effect. Poincaré too found many applications for the idea of a transfor-
mation group (see [8].) We need not look to the 20th century to see that the idea

10Influences on the young Poincaré are oddly hard to determine, but the picture he presented throughout
his life of geometry emphasized the metrical and topological aspects and its experiential side; axiomatic and
projective geometry were never his taste. For a further discussion, see [9].
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of a group acting on a space would be a very powerful one. Klein’s Erlangen Pro-
gramme may not have started this runaway chain of ideas, it may not have been the
most important single factor in promoting it, and it may even have missed several of
its most eloquent examples, but it brought ideas together eloquently and it has validly
proved to be a focus around which to organize and extend a profound idea.
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The photo shows the house of Paul Gordan in Göttingen (now Goethestrasse 4, in 1872 Hauptstrasse
204), whom Lie and Klein visited together on September 29, 1872. (Photo: C. Meusburger.) In
Klein’s private notes, he refers to this visit as follows: “1872: Sept 29, after a visit to Gordan
together with Lie. Hauptstrasse 204.” One line below, we can read: “26.10. Care of the University
Library. Lie (who initiated his program on transformation groups at that time) departed. Erlangen
program finished.”



The house in Göttingen where Emmy Noether was born (Hauptstrasse 23). (Photo: C. Meusburger.)
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1 Introduction

Felix Klein’s “Erlanger Programm” of 1872 aimed at characterizing geometries by the
invariants of simple linear transformation groups.1 It was reformulated by Klein in
this way: “Given a manifold[ness] and a group of transformations of the same; to de-
velop the theory of invariants relating to that group”2 ([24]; [25], p. 28). As if he had
anticipated later discussions about his program, a slightly different formulation imme-
diately preceding this is: “Given a manifold[ness] and a group of transformations of
the same; to investigate the configurations belonging to the manifoldness with regard
to such properties as are not altered by the transformations of the group.”3 A wide in-
terpretation of a later time by a mathematician is: “According to F. Klein’s viewpoint
thus geometrical quantities like distance, angle, etc. are not the fundamental quanti-
ties of geometry, but the fundamental object of geometry is the transformation group

1We have noticed the difficult relationship of Sophus Lie with regard to F. Klein or W. Killing in connec-
tion with priority issues ([52], pp. 365–375). Klein acknowledged S. Lie as “the godfather of my Erlanger
Programm” ([25], p. 201). For the historical background on Lie groups, S. Lie and F. Klein cf. [45], [18].

2“Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben. Man soll [. . . ] die
Theorie der Beziehungen, welche relativ zur Gruppe invariant sind, untersuchen.” – The translation given is by
M. W. Haskell and authorized by Klein; cf. New York Math. Soc. 2, 215–249 (1892/93).

3“Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die der Man-
nigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die Transformatio-
nen der Gruppe nicht geändert werden.” ([26], pp. 34–35) – In a later annotation reproduced in [27], he denied
as too narrow an interpretation of his formulation strictly in the sense of looking only at algebraic invariants.
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as a symmetry group; from it, the geometrical quantities only follow” ([49], p. 39).
On the other hand, by a physicist, Klein’s program is incorrectly given the expres-
sion “[. . . ] each geometry is associated with a group of transformations, and hence
there are as many geometries as groups of transformations” ([13], p. 2). The two
quotations show a vagueness in the interpretation of F. Klein’s “Erlanger Programm”
by different readers. This may be due to the development of the concepts involved,
i.e., “transformation group” and “geometry” during the past century. Klein himself
had absorbed Lie’s theory of transformation groups (Lie/Engel 1888–1893) when he
finally published his Erlanger Program two decades after its formulation. Originally,
he had had in mind linear transformations, not the infinitesimal transformations Lie
considered.

F. Klein’s point of view became acknowledged in theoretical physics at the time
special relativity was geometrized by H. Minkowski. Suddenly, the Lorentz (Poincaré)
group played the role Klein had intended for such a group in a new geometry, i.e., in
space-time. The invariants became physical observables. But, as will be argued in the
following, this already seems to have been the culmination of a successful applica-
tion to physical theories of his program. What has had a lasting influence on physical
theories, is the concept of symmetry as expressed by (Lie-)transformation groups and
the associated algebras with all their consequences. This holds particularly with re-
gard to conservation laws.4 The reason is that in physical theories, fields defined on
the geometry are dominant, not geometry itself. Also, for many physical theories
a geometry fundamental to them either does not exist or is insignificant. A case in
sight is the theory of the fractional quantum Hall effect from which quasi-particles
named “anyons” emerge. The related group is the braid group describing topolog-
ical transformations [17]. What often prevails are geometrical models like the real
line for the temperature scale, or Hilbert space, an infinite-dimensional linear vector
space, housing the states of quantum mechanical systems. In place of geometries,
differential geometrical “structures” are introduced. An example would be field re-
parametrization for scalar fields in space-time. The fields can be interpreted as local
coordinates on a smooth manifold. In the kinetic term of the Lagrangian, a metric be-
comes visible, which shows the correct transformation law under diffeomorphisms.
The direct application of F. Klein’s classification program seems possible only in
a few selected physical theories. The program could be replaced by a scheme classi-
fying the dynamics of physical systems with regard to symmetry groups (algebras).

The following discussion centers around finite-dimensional continuous groups.
Infinite-dimensional groups will be barely touched. (Cf. section 8.) Also, the impor-
tant application to discrete groups in solid state and atomic physics (e.g., molecular
vibration spectra) and, particularly, in crystallography are not dealt with.5 For the
considerations to follow here, the question need not be posed whether a reformula-
tion of Klein’s classifying idea appropriate to modern mathematics is meaningful.6

4Important developments following the Noether theorems have been described by Y. Kosmann-Schwarzbach
in her book about invariance and conservation laws [31].

5A survey of the groups is given in [30]. For finite groups cf. also chapters 1 and 2 of [32]. For the history
of the interaction of mathematics and crystallography cf. the book by E. Scholz [46].

6Some material in this respect may be found in P. Cartier’s essay on the evolution of the concepts of space
and symmetry [9].
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2 Electrodynamics and Special Relativity

It is interesting that F. Klein admitted that he had overlooked the Galilei-group when
writing up his “Erlanger Programm”: “Only the emergence of the Lorentz group
has led mathematicians to a more correct appreciation of the Galilei–Newton group”
([25], p. 56). It turned out later that the Galilean “time plus space” of this group is
more complicated than Minkowski’s space-time [36], [35].

What also had not been seen by F. Klein but, more than thirty years after the
pronounciation of the “Erlanger Programm”, by the mathematicians E. Cunningham
and H. Bateman, was that the Maxwell equations in vacuum admit the 15-parameter
conformal group as an invariance group [3], ([54], p. 409–436, here p. 423). However,
this is a very specific case; if the electromagnetic field is coupled to matter, this group
is no longer admitted, in general.

Special relativity, and with it Minkowski space, are thought to form a framework
for all physical theories not involving gravitation. Hence, a branch of physics like rel-
ativistic quantum field theory in both its classical and quantized versions is included
in this application of the “Erlanger Programm.”7 In the beginning of string theory
(Veneziano model), the string world sheet was likewise formulated in Minkowski
space or in a Lorentz space of higher dimension.

We need not say much more concerning special relativity, but only recall
Minkowski’s enthusiasm about his new find:

For the glory of mathematicians, to the infinite astonishment of remaining humanity,
it would become obvious that mathematicians, purely in their fantasy, have created
a vast area to which one day perfect real existence would be granted – without this
ever having been intended by these indeed ideal chaps. (quoted from ([25], p. 77).8

3 General Relativity

The description of the gravitational field by a Lorentz-metric, in Einstein’s general
relativity, was predestined to allow application of Klein’s program. The exact so-
lutions of Einstein’s field equations obtained at first like the Schwarzschild- and de
Sitter solutions as well as the Einstein cosmos, defined geometries allowing 4- and
6-parameter Lie transformation groups as invariance groups. Most of the exact so-
lutions could be found just because some invariance group had been assumed in the
first place. Later, also algebraical properties of the metrics were taken to alleviate the
solution of the non-linear differential equations. In the decades since, it has become

7We recall that, on the strictest mathematical level, an unambiguous union of quantum mechanics and special
relativity has not yet been achieved. Note also that algebraic quantum field theory does not need full Minkowski
space, but can get along with the weaker light-cone structure supplemented by the causality principle.

8“Es würde zum Ruhme der Mathematik, zum grenzenlosen Erstaunen der übrigen Menschheit offenbar
werden, dass die Mathematiker rein in ihrer Phantasie ein großes Gebiet geschaffen haben, dem, ohne dass es
je in der Absicht dieser so idealen Gesellen gelegen hätte, eines Tages die vollendete reale Existenz zukommen
sollte.”
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clear, that the generic solution of Einstein’s field equations does not allow an in-
variance group – except for the diffeomorphisms Diff(M) of space-time M. As every
physical theory can be brought into a diffeomorphism-invariant form, eventually with
the help of new geometrical objects, the role of this group is quite different from the
one F. Klein had in mind.9 He was well aware of the changed situation and saved his
program by reverting to infinitesimal point transformations. He expressed his regret
for having neglected, at the time of the formulation of his “Erlanger Programm”, Rie-
mann’s Habilitationsschrift of 1854 [44], and papers by Christoffel and Lipschitz.10

In fact, the same situation as encountered in general relativity holds already in Rie-
mannian geometry: generically, no nontrivial Lie transformation group exists. Veblen
had this in mind when he remarked:

With the advent of Relativity we became conscious that a space need not be looked
at only as a ‘locus in which’, but that it may have a structure, a field-theory of its
own. This brought to attention precisely those Riemannian geometries about which
the Erlanger Programm said nothing, namely those whose group is the identity. [. . . ]
([53], p. 181–182; quoted also by E. T. Bell [4], p. 443).11

That general relativity allows only the identity as a Lie transformation group (in the
sense of an isometry) to me is very much to the point. Perhaps, the situation is
characterized best by H. Weyl’s distinction between geometrical automorphisms and
physical automorphisms ([47], p. 17). For general relativity, this amounts to Diff(M)
on the one hand, and to the unit element on the other. Notwithstanding the useful
identities following from E. Noether’s second theorem, all erudite discussions about
the physical meaning of Diff(M) seem to be adornments for the fact that scalars are
its most general invariants possible on space-time. Usually, physical observables are
transforming covariantly; they need not be invariants. While the space-time metric
is both an intrinsically geometric quantity and a dynamical physical field, it is not
a representation of a finite-dimensional Lie transformation group: F. Klein’s program
just does not apply. If Einstein’s endeavour at a unified field theory built on a more
general geometry had been successful, the geometrical quantities adjoined to physical
fields would not have been covariants with regard to a transformation group in Klein’s
understanding.

But F. Klein insisted on having strongly emphasized in his program: “that a point
transformation xi D �.y1:::yn/ for an infinitely small part of space always has the

9Since E. Kretschmann’s papers of 1915 and 1917 [33], [34], there has been an extended discussion about
an eventual physical content of the diffeomorphism group in general relativity; cf. [40], [41]. It suffers from
Einstein’s identification of coordinate systems and physical reference systems with the latter being represented
by tetrads (frames). These can be adapted to matter variables.

10For the contributions of Lipschitz to the geometrization of analytical mechanics cf. ([37], pp. 29–31).
11The original quote from Veblen continues with “In such spaces there is essentially only one figure, namely

the space structure as a whole. It became clear that in some respects the point of view of Riemann was more
fundamental than that of Klein.”
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character of a linear transformation [. . . ]”12 ([25], p. 108). A symmetry in general
relativity is defined as an isometry through Killing’s equations for the infinitesimal
generators of a Lie-algebra. Thus, in fact, F. Klein’s original program is restricted
to apply to the tangent space of the Riemannian (Lorentz) manifold. This is how
É. Cartan saw it: a manifold as the envelope of its tangent spaces; from this angle, he
developed his theory of groups as subgroups of GL(n,R) with the help of the concept
of G-structure.13 Cartan’s method for “constructing finitely and globally inhomoge-
neous spaces from infinitesimal homogeneous ones” is yet considered by E. Scholz as
“a reconciliation of the Erlangen program(me) and Riemann’s differential geometry
on an even higher level than Weyl had perceived”([47], p. 27).14

An extension of general relativity and its dynamics to a Lorentz-space with one
time and four space dimensions was achieved by the original Kaluza–Klein theory.
Its dimensional reduction to space-time led to general relativity and Maxwell’s the-
ory refurbished by a scalar field. Since then, this has been generalized in higher
dimensions to a system consisting of Einstein’s and Yang–Mills’ equations [23], and
also by including supersymmetry. An enlargement of general relativity allowing for
supersymmetry is formed by supergravity theories. They contain a (hypothetical)
graviton as bosonic particle with highest spin 2 and its fermionic partner of spin 3/2,
the (hypothetical) gravitino; cf. also Section 6.

4 Phase space

A case F. Klein apparently left aside, is phase space parametrized by generalized co-
ordinates qi and generalized momenta pi of particles. This space plays a fundamen-
tal role in statistical mechanics, not through its geometry and a possibly associated
transformation group, but because of the well-known statistical ensembles built on
its decomposition into cells of volume h3 for each particle, with h being Planck’s
constant. For the exchange of indistinguishable particles with spin, an important role
is played by the permutation group: only totally symmetric or totally anti-symmetric
states are permitted. In 2-dimensional space, a statistics ranging continuously be-
tween Bose–Einstein and Fermi–Dirac is possible.

The transformation group to consider would be the abelian group of contact trans-
formations (cf. [20]):

q0
i D fi .qi ; pj / ; p0

j D gj .qi ; pj / ; (4.1)

12“dass eine Punkttransformation [. . . ] für eine unendlich kleine Partie des Raumes immer den Charakter
einer linearen Transformation hat.”

13H. Weyl with his concept of purely infinitesimal geometry in which a subgroup G � SL.n;R/ (general-
ized ”rotations”) acts on every tangent space of the manifold, separately, took a similar position ([48], p. 24).

14For a Lie group G � L, the homogeneous space corresponds to l g�1 Š TpM , where l and g are the
respective Lie algebras.
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which however is of little importance in statistical mechanics.15 In some physics
textbooks, no difference is made between contact and canonical transformations, cf.
e.g., [10]. In others, the concept of phase space is limited to the cotangent bun-
dle of a manifold with a canonical symplectic structure ([1], p. 341). An important
subgroup of canonical transformations is given by all those transformations which
keep Hamilton’s equations invariant for any Hamiltonian.16 Note that for the deriva-
tion of the Liouville equation neither a Hamiltonian nor canonical transformations
are needed. In this situation, symplectic geometry can serve as a model space with
among others, the symplectic groups SP.n;R/ acting on it as transformation groups.
Invariance of the symplectic form †ni .dqi ^ dpi / implies the reduction of contact
to canonical transformations. Symplectic space then might be viewed in the spirit
of F. Klein’s program. He does not say this but, in connection with the importance
of canonical transformations to “astronomy and mathematical physics”, he speaks of
“quasi-geometries in aR2n as they were developed by Boltzmann and Poincaré [. . . ]”
([29], p. 203).

In analytical mechanics, Hamiltonian systems with conserved energy are stud-
ied and thus time-translation invariance is assumed. Unfortunately, in many systems,
e.g., those named “dynamical systems”, energy conservation does not hold. For them,
attractors can be interpreted as geometrical models for the “local asymptotic behav-
ior” of such a system while bifurcation forms a “geometric model for the controlled
change of one system into another” ([2], p. XI). Attractors can display symmetries,
e.g., discrete planar symmetries [8], etc.

In statistical thermodynamics, there exist phase transitions between thermody-
namic phases of materials accompanied by “symmetry breaking.” As an example,
take the (2nd order) transition from the paramagnetic phase of a particle-lattice,
where parallel and anti-parallel spins compensate each other to the ferromagnetic
phase with parallel spins. In the paramagnetic state, the full rotation group is a con-
tinuous symmetry. In the ferromagnetic state below the Curie-temperature, due to
the fixed orientation of the magnetization, the rotational symmetry should be hidden:
only axial symmetry around the direction of magnetization should show up. How-
ever, in the Heisenberg model (spin 1/2) the dynamics of the system is rotationally
invariant also below the Curie point. The state of lowest energy (ground state) is
degenerate. The symmetry does not annihilate the ground state. By picking a defi-
nite direction, the system spontaneously breaks the symmetry with regard to the full
rotation group. When a continuous symmetry is spontaneously broken, massless par-
ticles appear called Goldstone(-Nambu) bosons. They correspond to the remaining
symmetry. Thus, while the dynamics of a system placed into a fixed external ge-
ometry can be invariant under a transformation group, in the lowest energy state the
symmetry may be reduced. This situation seems far away from F. Klein’s ideas about
the classification of geometries by groups.

15It is only loosely connected with Lie’s geometric contact transformation which transforms plane surface
elements into each other. Manifolds in contact, i.e., with a common (tangential) surface element remain in
contact after the transformation. A class of linear differential equations is left invariant; cf. [28], pp. 19–20.

16For contact transformations with higher derivatives cf. [59].
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5 Gauge theories

Hermann Weyl’s positive thoughts about Klein’s program were expressed in a lan-
guage colored by the political events in Germany at the time:

The dictatorial regime of the projective idea in geometry was first broken
by the German astronomer and geometer Möbius, but the classical doc-
ument of the democratic platform in geometry, establishing the group
of transformations as the ruling principle in any kind of geometry, and
yielding equal rights of independent consideration to each and every
such group, is F. Klein’s ‘Erlanger Programm’. (Quoted from Birkhoff
& Bennet [6].)

Whether he remembered this program when doing a very important step for phy-
sics is not known: H. Weyl opened the road to gauge theory. He associated the
electromagnetic 4-potential with a connection, at first unsuccessfully by coupling the
gravitational and electrodynamic fields (local scale invariance). A decade later, by
coupling the electromagnetic field to matter via Dirac’s wave function; for the latter
he expressly invented 2-spinors. The corresponding gauge groups were R and U.1/,
respectively. This development and the further path to Yang–Mills theory for non-
abelian gauge groups has been discussed in detail by L. O’Raifeartaigh and N. Strau-
mann17 [42], [43]. Weyl had been convinced about an intimate connection of his
gauge theory and general relativity: “Since gauge invariance involves an arbitrary
function � it has the character of ‘general’ relativity and can naturally only be under-
stood in that context” ([57], translation taken from [43]). But he had not yet taken
note of manifolds with a special mathematical structure introduced since 1929, i.e.,
fibre bundles. Fibre bundles are local products of a base manifold (e.g., space-time),
and a group. The action of the group creates a fibre (manifold) in each point of the
base. Parallel transport in base space corresponds to a connection defined in a section
of the bundle. By gauge transformations, a fibre is mapped into itself. In physics,
the transformation group may be a group of “external” symmetries like the Poincaré
group or of “internal” symmmetries like a Yang–Mills (gauge) group. A well known
example is the frame bundle of a vector bundle with structure group GL(n;R). It con-
tains all ordered frames of the vector space (tangent space) affixed to each point of
the base manifold. Globally, base and fibres may be twisted like the Möbius band is
in comparison with a cylindrical strip.18 In 1929, Weyl had not been able to see the
gauge potential as a connection in a principal fibre bundle. Until this was recognized,
two to three decades had to pass.

Comparing the geometry of principal fibre bundles with Riemannian (Lorentzian)
geometry, F. Klein’s program would be realized in the sense that a group has been
built right into the definition of the bundle. On the other hand, the program is limited

17The original Yang–Mills gauge theory corresponded to SU(2)-isospin symmetry of the strong interaction.
18Since the introduction of fibre spaces by H. Seifert in 1932, at least five definitions of fibre bundles were

advanced by different researchers and research groups [38]. The first textbook was written by Steenrod [51].
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because the group can be any group. In order to distinguish bundles, different groups
have to be selected in order to built, e.g., SU.2/�; SU.3/-bundles, etc.19 This is
a classification of bundle geometry in a similar sense as isometries distinguish differ-
ent Lorentz-geometries. To classify different types of bundles is another story.

Moreover, in gauge theories, the relation between observables and gauge invari-
ants is not as strong as one might have wished it to be. E.g., in gauge field theory for
non-abelian gauge groups, the gauge-field strength (internal curvature) does not com-
mute with the generators of the group: it is not an immediate observable. Only gauge-
invariant polynomials in the fields or, in the quantized theory, gauge-invariant oper-
ators, are observables. In contrast, the energy-momentum tensor is gauge-invariant
also for non-abelian gauge groups.

In terms of the symmetry20, gauge invariance is spontaneously broken, both in the
case of electroweak and strong interactions.

General relativity with its metric structure is not a typical gauge theory: any exter-
nal transformation group would not only act in the fibre but also in the tangent space
of space-time as well. Thus, an additional structure is required: a soldering form
gluing the tangent spaces to the fibres [12]. Many gauge theories for the gravita-
tional field were constructed depending on the group chosen: translation-, Lorentz-,
Poincaré, conformal group etc.21 We will come back to a Poincaré gauge theory
falling outside of this Lie-group approach in Section 7.

6 Supersymmetry

Another area in physics which could be investigated as a possible application of
Klein’s program is supersymmetry-transformations and supermanifolds. Supersym-
metry expressed by super-Lie-groups is a symmetry relating the Hilbert spaces of
particles (objects) obeying Bose- or Fermi-statistics (with integer or half-integer spin-
values, respectively). In quantum mechanics, anti-commuting supersymmetry oper-
ators exist mapping the two Hilbert spaces into each other. They commute with the
Hamiltonian. If the vacuum state (state of minimal energy) is annihilated by the su-
persymmetry operators, the 1-particle states form a representation of supersymmetry
and the total Hilbert space contains bosons and fermions of equal mass.22 As this is in
contradiction with what has been found, empirically, supersymmetry must be broken
(spontaneously) in nature.

19Elementary particles are classified with regard to local gauge transformations SU.3/c � SU.2/L �
U.1/Y . The index c refers to color-charge, Y to weak hypercharge, and L to weak isospin. For a review
of the application of gauge theory to the standard model cf. [55].

20SU.2/ � U.1/ symmetry of electroweak interactions; approximate flavour SU.3/-symmetry of strong
interactions.

21A recent reader about gauge theories of gravitation is [7].
22For the geometry of supersymmetric quantum mechanics cf. e.g., [58]. There, supersymmetric quantum

field theory is formulated on certain infinite-dimensional Riemannian manifolds.
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For an exact supersymmetry, the corresponding geometry would be supermani-
folds, defined as manifolds over superpoints, i.e., points with both commuting coor-
dinates as in a manifold with n space dimensions, and anti-commuting “coordinates”
forming a Grassmann-algebra �; N� (“even” and “odd” elements) [11].23 As a gener-
alization of Minkowski space, the coset space Poincaré/Lorentz in which the super-
Poincaré group acts, is called superspace ([14], Chapter 6), [50], p. 107). Super-
space is a space with 8 “coordinates” zA D .xk; 	�; N	 P�/, where xk are the usual real
space-time coordinates plus 4 real (anti-commuting) “fermionic” coordinates from
a Weyl-spinor 	� and its conjugate N	 P�/.

A super-Lie group G is a Lie group with two further properties: 1) it is a su-
permanifold the points of which are the group elements of G ; 2) the multiplicative
map F: G ! G � G is differentiable ([11], p. 123).24 All classical Lie groups have
extensions to super-Lie groups. Most important for quantum field theory is the super-
Poincaré group and its various associated super-Lie-algebras. The super-Poincaré
algebras contain both Lie-brackets and anti-commuting (Poisson) brackets. A su-
perparticle (supermultiplet) corresponds to a reducible representation of the Poincaré
algebra.

The geometry of supermanifolds seems to play only a minor role in physics. An
example for its use would be what has been called the gauging of supergroups [39].
Local super-Lie algebras are important because their representations constitute super-
fields by which the dynamics of globally or locally supersymmetric physical theories
like supergravity are built.25 Supergravity containing no particle of spin larger than 2
can be formulated in Lorentz-spaces up to maximal dimension 11. In space-time, at
least 7 supergravities can be formulated. Yet, a geometrical construct like a superme-
tric is of no physical importance.

This all too brief description is intended to convey the idea that, in physics, the
role of supersymmetry primarily is not that of a transformation group in a super-
manifold but of a group restricting the dynamics of interacting fields. By calling
for invariants with regard to supersymmetry, the choice of the dynamics (interaction
terms in the Lagrangian) is narrowed considerably. The supersymmetric diffeomor-
phism group can be used to formulate supersymmetric theories in terms of differential
forms on superspace: “superforms” ([56], Chapter XII). Possibly, B. Julia envisioned
the many occuring supersymmetry groups when drawing his illustration for super-
gravities “A theoretical cathedral” and attaching to the x-axis the maxim: GEOME-
TRY ' GROUP THEORY ([21], p. 357). When the view is narrowed to F. Klein’s
“Erlanger Programm” as is done here, then the conclusion still is that the program
cannot fare better in supergravity than in general relativity.

23As a supermanifold is not only formed from the usual points with commuting coordinates, another definition
has been used: It is a topological space with a sheaf of superalgebras (Z2-graded commutative algebras).

24According to ([11], p. 173–174) conventional super-Lie groups and unconventional super-Lie groups unre-
lated to graded algebras must be distinguished.

25Superfields can be defined as functions on superspace developed into power series in the nilpotent
Grassmann-variables in superspace; the power series break off after the term �� N� N� a.x/. Local supersym-
metric theories are theories invariant under supergauge-transformations.
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7 Enlarged Lie algebras

We now come back to space-time and to a generalization of (Lie)-transformation
groups acting on it. As insinuated before, for the classification of structures in physi-
cal theories the attention should lie rather on the algebras associated with the groups;
geometrical considerations intimately related to groups are of little concern. Lie alge-
bras have been generalized in a number of ways. One new concept is “soft”, “open”
or “nonlinear” Lie algebras, in which the structure constants are replaced by struc-
ture functions depending on the generators themselves. They can also be interpreted
as infinite-dimensional Lie algebras ([15], pp. 60–61). An example from physics
are local supersymmetry transformations (defined to include diffeomorphisms, local
Lorentz and local supersymmetry transformations) which form an algebra with struc-
ture functions. They depend on the symmetry generators themselves ([39], p. 140).
Another generalization is “local Lie algebras” which arise as the Lie algebras of cer-
tain infinite-dimensional Lie groups. The structure of the Lie algebra is given by:

Œf1; f2� D †ni;j;kcijkxk@if1@jf2 ;
where f1; f2 are smooth functions on a smooth manifold, @k the partial derivatives
with respect to local coordinates on M , and cij

k
the structure constants of an n-

dimensional Lie algebra (cf. [5], section 7). This seems to be a rather special kind of
algebra.

Recently, a further enlargment has been suggested called “extended Lie algebras”
and in which the structure constants are replaced by functions of the space-time coor-
dinates. In the associated groups, the former Lie group parameters are substituted by
arbitrary functions [16]. The Lie algebra elements form an “involutive distribution”,
a smooth distribution V on a smooth manifold M . The Lie brackets constitute the
composition law; the injection V ,! TM functions as the anchor map. Thus, this
is a simple example for a tangent Lie algebroid. In addition to the examples from
physics given in [16], the Poincaré gauge theory of F.-W. Hehl et al. seems to cor-
respond to the definition of an extended Lie algebra. In this theory, the difference
with the Lie algebra of the Poincaré group is that the structure functions now con-
tain the frame-metric and the gauge fields, i.e., curvature as rotational and torsion as
translational gauge field, all dependent on the space-time coordinates [19].

8 Conclusions

In the course of ranging among physical theories with an eye on F. Klein’s “Erlanger
Programm”, we noticed that the focus had to be redirected from groups and geom-
etry to algebras and the dynamics of fields. In particular, with regard to infinite-
dimensional groups, the discussion within physical theories of Klein’s program would
have been easier had it been formulated in terms of algebras. Then, also Virasoro-
and Kac–Moody algebras, appearing among others in conformal (quantum) field the-



Bibliography 87

ory and in string theory could have been included in the discussion.26 Hopf-algebras
occuring in non-commutative geometry could have formed another example. With the
mentioned change in focus included, the application of Klein’s program to physical
theories is far more specific than a loosely defined methodological doctrine like the
“geometrization of physics” (cf. [22]). While both general relativity and gauge the-
ory can be considered as geometrized, they only partially answer F. Klein’s “Erlanger
Programm.” In physical theories, the momentousness of Lie’s theory of transforma-
tion groups easily surpasses Klein’s classification scheme.
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1 Introduction

Klein’s model of hyperbolic space is well known to geometers. The underlying set
is, in the planar case, the interior of an ellipse, and in the three-dimensional case,
the interior of an ellipsoid. The hyperbolic geodesics are represented by Euclidean
straight lines and the distance between two distinct points is defined as a constant
times the logarithm of the cross ratio of the quadruple formed by this pair of points
together with the two intersection points of the Euclidean straight line that joins them
with the boundary of the ellipsoid, taken in the natural order (see the left hand side
of Figure 5.5 below). Klein’s formula is the first explicit formula for the distance
function in hyperbolic geometry.

A much less known fact is that Klein, besides giving a formula for the distance
function in hyperbolic geometry, gave formulae for the distance in spherical and in
Euclidean geometry using the cross ratio, taking instead of the ellipse (or ellipsoid)
other kinds of conics. In the case of Euclidean geometry, the conic is degenerate.1 In
this way, the formulae that define the three geometries of constant curvature are of the
same type, and the constructions of the three geometries are hereby done in a unified

1Recall that a conic is the intersection of a cone in 3-space and a plane. Degenerate cases occur, where the
intersection is a single point (the vertex of the cone), or a straight line (“counted twice”), or two intersecting
straight lines.
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way in the realm of projective geometry. This is the main theme of the two papers On
the so-called non-Euclidean geometry, I and II ([33] [35]) of Klein.

In this paper, we review and comment on these two papers.
Klein’s construction was motivated by an idea of Cayley. We shall recall and

explain Cayley’s idea and its developments by Klein. Let us note right away that al-
though Klein borrowed this idea from Cayley, he followed, in using it, a different path.
He even interpreted Calyey’s idea in a manner so different from what the latter had
in mind that Cayley misunderstood what Klein was aiming for, and thought that the
latter was mistaken.2 In fact, Cayley’s interest was not particularly in non-Euclidean
geometry; it was rather to show the supremacy of projective geometry over Euclidean
geometry, by producing the Euclidean metric by purely projective methods. We shall
comment on this fact in �8 below.

Klein wrote his two papers in 1871 and 1872, just before he wrote his Erlangen
program manifesto [34],3 the famous text in which he proposes a unification of all ge-
ometries based on the idea that a geometry should be thought of as a transformation
group rather than a space. Although this point of view is familiar to us, and seems
natural today, this was not so for mathematicians even by the end of the nineteenth
century.4 Without entering into the details of this philosophical question, let us recall
that from the times of Euclid and until the raise of projective geometry, mathemati-
cians were reluctant to the use of transformations – which, classically, carried the
name motion5 – as elements in the proof of a geometrical proposition.6

Klein’s two papers [33] and [35] are actually referred to in the Erlangen program
text. We shall quote below some of Klein’s statements in this program that are very
similar to statements that are made in the two papers with which we are concerned.

Another major element in the Erlangen program is the question of finding a clas-
sification of the various existing geometries using the setting of projective geometry
and of the projective transformation groups. Klein’s paper [33] constitutes a leading
writing on that subject, and it puts at the forefront of geometry both notions of trans-
formation groups and of projective geometry. At the same time, this paper constitutes
an important piece of work in the domain of non-Euclidean geometry. Historically, it
is probably the most important one, after the writings of the three founders of hyper-

2 Cayley did not understand Klein’s claim that the cross ratio is independent of the Euclidean underlying
geometry, and therefore he disagreed with Klein’s assertion that his construction of the three geometries of
constant curvature was based only on projective notions; cf. �5.

3The first paper carries the date (“Handed in”) “Düsseldorf, 19. 8. 1871” and the second paper: “Göttingen,
8. 6. 1872”. Thus the second paper was finished four months before the Erlangen Program, which carries the
date “October 1872”.

4In the introduction of his Lezioni di geometria proiettiva (1898) [20], Enriques writes that geometry studies
the notion of space and the relation between its elements (points, curves, surfaces, lines, planes, etc.) This was
still not the transformation group point of view.

5The word motion, denoting a rigid transformation, was used by Peano. Hilbert used the word congruence.
6It is considered that the Arabic mathematician Abu-‘Ali Ibn al-Haytham, (d. after 1040), in his book titled

On the known, developed the first geometrical Euclidean system in which the notion of motion is a primitive
notion (see [31] p. 446). Several centuries later, Pasch, Veronese and Hilbert came up with the same idea. In
his book La science et l’hypothèse (1902), Poincaré discusses the importance of the notion of motion (see [51]
p. 60).
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bolic geometry (Lobachevsky, Bolyai and Gauss) and after Beltrami’s paper [4] on
which we shall also comment below.

In the introduction of the first paper [33], Klein states that among all the works
that were done in the preceding fifty years in the field of geometry, the development
of projective geometry occupies the first place.7 In fact, the use of the notion of
transformation and of projective invariant by geometers like Poncelet8 had prepared
the ground for Klein’s general idea that a geometry is a transformation group. The
fact that the three constant curvature geometries (hyperbolic, Euclidean and spherical)
can be developed in the realm of projective geometry is expressed by the fact that the
transformation groups of these geometries are subgroups of the transformation group
of projective transformations. Klein digs further this idea, namely, he gives explicit
constructions of distances and of measures for angles in the three geometries9 using
the notion of “projective measure” which was introduced by Cayley about twelve
years before him.

Before Klein, Cayley gave a construction of the Euclidean plane, equipped with its
metric, as a subset of projective space, using projective notions. This result is rather
surprising because a priori projective geometry is wider than Euclidean geometry
insofar as the latter considers lines, projections and other notions of Euclidean geom-
etry but without any notion of measurement of angles or of distances between points.
Introducing distances between points or angle measurement and making the trans-
formation group of Euclidean geometry a subgroup of the projective transformation
group amounts to considering Euclidean geometry as a particular case of projective
geometry; this was the idea of Cayley and, before him, related ideas were emitted by
Laguerre, Chasles and possibly others. We emphasize the fact that Cayley did not use
the notion of cross ratio in his definition of the distance and that Klein’s definitions
of both measures (distances and angles) are based on the cross ratio were new. It was
also Klein’s contribution that the two non-Euclidean geometries are also special cases
of a projective geometry.

Klein starts his paper [33] by referring to the work of Cayley, from which, he says,
“one may construct a projective measure on ordinary space using a second degree sur-
face as the so-called fundamental surface.” This sentence needs a little explanation.
“Ordinary space” is three-dimensional projective space. A “measure” is a way of
measuring distances between points as well as angles between lines (in dimension
two) or between planes (in dimension three). A measure is said to be “projective” if
its definition is based on projective notions and if it is invariant under the projective
transformations that preserve a so-called fundamental surface. Finally, the “funda-

7A similar statement is made in the introduction of the Erlangen program [34]: “Among the advances of the
last fifty years in the field of geometry, the development of projective geometry occupies the first place.”

8Poncelet, for instance, made heavy use of projective transformations in order to reduce proofs of general
projective geometry statements to proofs in special cases which are simpler to handle.

9The reader will easily see that it is a natural idea to define the notion of “angle” at any point in the plane by
using a conic (say a circle) at infinity, by taking the distance between two rays starting at a point as the length of
the arc of the ellipse at infinity that the two rays contain. However, this is not the definition used by Klein. His
definition of angle uses the cross ratio, like for distances between points, and this makes the result projectively
invariant.
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mental surface” is a quadric, that is, a second-degree surface, which is chosen as a
“surface at infinity” in projective space. Cayley called such a surface the absolute. In
the plane, the quadric is replaced by a conic called the absolute conic.

Let us say things more precisely. A fixed quadric is chosen. To define the distance
between two points, consider the line that joins them; it intersects the quadric in two
points (which may be real – distinct or coincident – or imaginary). The distance be-
tween the two points is then taken to be, up to a constant factor, the logarithm of
the cross ratio of the quadruple formed by these points together with the intersection
points of the line with the quadric taken in a natural order. The cross ratio (or its log-
arithm) could be imaginary, and the mutiplicative constant is chosen so that the result
is real. We shall come back to this definition in �7 of this paper. In any case, the pro-
jective measure depends on the choice of a fundamental surface and the definitions of
measures on lines and on planes use constructions which are dual to each other. Thus,
Klein’s construction is based on the fact that two points in the real projective space
define a real line, which is also contained in a complex line (its complexification),
after considering the real projective space as sitting in the complex projective space.
Likewise, a quadric in the real projective space is the intersection with that space of
a unique quadric in the complex projective space. If the real line intersects the real
quadric in two points, then these two points are real, and in this case the cross ratio is
real. In the general case, the complex line intersects the quadric in two points, which
may be real or complex conjugate or coincident, and the cross ratio is a complex
number. The multiplicative constant in front of the logarithm in the definition of the
distance makes all distances real.

In some cases, there is a restriction on the quadric. Namely, in the case where
it is defined by the quadratic form x2 C y2 � z2, the quadric has an interior and an
exterior,10 and one takes as underlying space the interior of the quadric.

Let us recall that in the projective plane, there are only two kinds of non-degenerate
conics, viz. the real conics, which in homogeneous coordinates can be written as
x2Cy2�z2 D 0, and the imaginary conics, which can be written as x2Cy2Cz2 D 0.
There is also a degenerate case where the conic is reduced to two coincident lines,
which can be written in homogeneous coordinates as z2 D 0, or also x2 C y2 D 0.
(Notice that this is considered as a degenerate because the differential of the implicit
equation is zero.) In the way Cayley uses it, a degenerate conic can be thought of as
the two points on the circle at infinity whose homogeneous coordinates are .1; i; 0/
and .1;�i; 0/.

In working with a conic at infinity, Cayley gave a general formula for distances
that does not distinguish between the cases where the conic is real or imaginary, but he
noted that Euclidean geometry is obtained in the case where the absolute degenerates
into a pair of points. Klein made a clear distinction between the cases of a real and
an imaginary conic and he obtained the three geometries:

10A point is in the interior of the quadric if there is no real tangent line from that point to the quadric (that is,
a line that intersects it in exactly one point). Note that this notion applies only to real quadrics, since in the case
of a complex quadric, from any point in the plane one can find a line which is tangent to the quadric. This can
be expressed by the fact that a certain quadratic equation has a unique solution.
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� The elliptic, in the case where the absolute is imaginary. (Notice that in this
case, all the real directions are points in the projective space, since none of
them intersects the imaginary conic.) The fundamental conic in this case can
be taken to be the imaginary circle whose equation is

P
i x
2
i D 0 (it has no

real solutions).

� The hyperbolic, in the case where the absolute is real. In this case, the conic has
a well-defined “interior” and “exterior”, and the hyperbolic plane corresponds
to the interior of the conic.

� The parabolic, in the case where the absolute degenerates into two imaginary
points. This is a limiting case of the preceding ones, and it corresponds to
Euclidean geometry.

In this way, the three geometries become a particular case of projective geometry in
the sense that the transformation group of each geometry is a subgroup of the pro-
jective transformation group, namely the group of transformations that fix the given
conic.

2 Projective geometry

As we already noted several times, in Klein’s program, projective geometry acts as
a unifying setting for many geometries. In fact, several theorems in Euclidean ge-
ometry (the theorems of Pappus, Pascal, Desargues, Menelaus, Ceva, etc.) find their
natural explanation in the setting of projective geometry. Let us say a few words of
introduction to this geometry, since it will be important in what follows.

For a beginner, projective geometry is, compared to the Euclidean, a mysterious
geometry. There are several reasons for that. First, the non-necessity of any notion
of distance or of length may be misleading (what do we measure in this geo-metry?)
Secondly, the Euclidean coordinates are replaced by the less intuitive (although more
symmetric) “homogeneous coordinates”. Thirdly, in this geometry, lines intersect “at
infinity”. There are points at infinity, there are “imaginary points”, and there is an
overwhelming presence of the cross ratio, which, although a beautiful object, is not
easy to handle. We can also add the fact that the projective plane is non-orientable and
is therefore more difficult to visualize than the Euclidean. One more complication is
due to the fact that several among the founders of the subject had their particular point
of view, and they had different opinions of what the fundamental notions should be.

Using modern notation, the ambient space for this geometry is the n-dimensional11

projective space RP
n. This is the quotient of Euclidean space RnC1 n f0g by the

equivalence relation which identifies a point x with any other point �x for � 2 R
�.

The projective transformations of RPn are quotients of the linear transformations of
RnC1. The linear transformations map lines, planes, etc. in RnC1 to lines, planes,

11Of course, in the early theory, only dimensions two and three were considered.
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etc. in RnC1; therefore, they map points, lines, etc. in RP
n to points, lines, etc. in

RP
n. The incidence properties – intersections of lines, of planes, alignment of points,

etc. – are preserved by the projective transformations. These transformations form
a group called the projective linear group, denoted by PGL.n;R/. There is no metric
on RP

n which is invariant by the action of this group, since this action is transitive
on pairs of distinct points. As we already noted, Cayley observed that if we fix an
appropriate quadric in RP

n, which he called the absolute, we can recover the group of
Euclidean geometry by restricting PGL.n;R/ to the group of projective transforma-
tions that preserve this quadric. In this way, Euclidean space sits as the complement
of the quadric, which becomes the quadric at infinity. Klein states in his Erlangen
program [34]:

Although it seemed at first sight as if the so-called metrical relations were not ac-
cessible to this treatment, as they do not remain unchanged by projection, we have
nevertheless learned recently to regard them also from the projective point of view,
so that the projective method now embraces the whole of geometry.

Cayley’s paper [12] on this subject was published in 1859 and it is abundantly cited
by Klein in the two papers which are our main object of interest here.

There is a situation which is familiar to any student in geometry, which is in the
same spirit as Cayley’s remark. If we fix a hyperplaneH in the projective plane RPn,
then the subgroup of the group of projective transformations of RPn that preserveH
is the affine group. Affine space is the complement of that hyperplane acted upon by
the affine group. It is in this sense that “affine geometry is part of projective geome-
try”. In the projective space, at infinity of the affine plane stands a hyperplane. From
Klein’s point of view, affine geometry is determined by (and in fact it is identified
with) the group of affine transformations, and this group is a subgroup of the group
of projective transformations. Likewise, Euclidean and hyperbolic geometries are all
part of affine geometry (and, by extension, of projective geometry). Furthermore, we
have models of the spherical, Euclidean and hyperbolic spaces that sit in affine space,
each of them with its metric which is relative to a “conic at infinity”. One conse-
quence is that all the theorems of projective geometry hold in these three classical
geometries of constant curvature. Klein insists on this fact, when he declares that
projective geometry is “independent of the parallel postulate” (see �8 below).

In projective geometry, one studies properties of figures and of maps arising from
projections (“shadows”) and sections, or, rather, properties that are preserved by such
maps. For instance, in projective geometry, a circle is equivalent to an ellipse (or to
any other conic), since these objects can be obtained from each other by projection.

Mathematical results where projective geometry notions are used, including du-
ality theory, are contained in the works of Menelaus (1st–2nd c. A. D.), Ptolemy and
in the later works of their Arabic commentators; see [52] and [53]. The Renaissance
artists used heavily projective geometry; see Figures 5.1 and 5.2 for some examples.
A good instance of how projective geometry may be useful in perspective drawing is
provided by Desargues’ Theorem, which is one of the central theorems of projective
geometry and which we recall now.

Consider in the projective plane two triangles abc andABC . We say that they are
in axial perspectivity if the three intersection points of lines ab\AB; ac\AC; bc\
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Figure 5.1. Man drawing a lute. Woodcut by Albrecht Dürer (1471–1528), from his Instructions for
measuring with compass and ruler, Book 4, Nürnberg 1525. A drawing device involving a stretched
string is used to provide the image under a perspective map. Projective properties of figures are
preserved under perspective drawing. The subject of projective geometry was motivated by the art
of perspective drawing.

BC are on a common line. We say that the three triangles are in central perspectivity
if the three lines Aa;Bb; Cc meet in a common point. Desargues’ theorem says that
for any two triangles, being in axial perspectivity is equivalent to being in central
perspectivity.

The theorem is quoted in several treatises of perspective drawing.12

Ideas and constructions of projective geometry were extensively used by Renais-
sance artists like Leon Battista Alberti (1404–1472), Leonardo da Vinci (1452–1519)
and Albrecht Dürer whom we already mentioned. All these artists used for instance
the principle saying that any set of parallel lines in the space represented by the draw-
ing which are not parallel to the plane of the picture must converge to a common
point, called the vanishing point.13 Of course, everything started with the Greeks,

12Desargues’ theorem was published for the first time by A. Bosse, in his Manière universelle de M. Desar-
gues pour manier la perspective par petit pied comme le géométral (Paris, 1648, p. 340). Bosse’s memoir is
reproduced in Desargues’ Œuvres (ed. N. G. Poudra, Paris 1884, p. 413–415). Desargues’ proof of the the-
orem uses Menelaus’ Theorem. Von Staudt, in his Geometrie der Lage, (Nuremberg, 1847) gave a proof of
Desargues’ theorem that uses only projective geometry notions.

13The English term vanishing point was introduced by Brook in the treatise [58] that he wrote in 1719, which
is also the first book written in English on the art of perspective. The italian expression punto di fuga was already
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Figure 5.2. Artist drawing a nude, woodcut by Albrecht Dürer, from The Art of Measuring. Sim-
mern: Hieronymus Rodler 1531.

and two important works on perspective by Euclid (fl. 3rd c. B.C.) and by Heliodorus
of Larissa (3d c. A.D.) were translated into Latin in 1573 by the Renaissance mathe-
matician, astronomer and monk Egnazio Danti14 (1536–1586) [16]. About a quarter
of a century later, the italian mathematician and astronomer Guidobaldo del Monte
(1545–1607) wrote a treatise in six books (Perspectivae libri, published in Pisa in
1600) in which he led the mathematical foundations of perspective drawing that in-
cluded the vanishing point principle. In this treatise, the author often refers to Euclid’s
Elements. The architect and famous scenographer15 Nicola Sabbatini (1574–1654)
made extensive use of Guidobaldo’s theoretical work. Guidobaldo del Monte’s book
is regarded as a mathematical work on projective geometry. Perspective drawing in-
volves some of the basic operations of projective geometry (projections and sections),
and it highlights the non-metrical aspect of that geometry.

It is usually considered that the modern theory of projective geometry started with
J.-V. Poncelet (1788–1867), in particular with his two papers Essai sur les propriétés
projectives des sections coniques (presented at the French Academy of Sciences in
1820) and Traité des propriétés projectives des figures (1822). Poncelet tried to elim-
inate the use of coordinates and to replace them by synthetic reasonings. He made
heavy use of duality (also called polarity) theory with respect to a conic. This is
based on the simple observation that in the projective plane any two points define
a line and any two lines define a point. Using this fact, certain statements in pro-
jective geometry remain true if we exchange the words “line” and “point”. Using
this theory, Brianchon deduced the theorem which bears his name, on the diagonals
of a hexagon circumscribed to a conic, from Pascal’s theorem on the intersection of
pairs of opposite sides of a hexagon inscribed in a conic. Another well-known exam-

used by Alberti and the other italian Renaissance artists. Independently of this aspect of terminology, one should
notice that a psychological effort is required when considering parallel lines as lines meeting at a common point.

14Danti was, during more than 30 years, professor of mathematics at the University of Bologna, which was
one of the most famous universities in Europe (and the oldest one). At his death, Giovanni Antonio Magini,
who held a geocentric vision of the world, was chosen as his successor, instead of Galileo.

15Designer of theatrical scenery



5 On Klein’s So-called Non-Euclidean geometry 99

ple is Menelaus’ Theorem which is transformed under duality into Ceva’s Theorem.
Duality in projective geometry is at the basis of other duality theories in mathemat-
ics, for instance in linear algebra, between a finite-dimensional vector space and the
vector space of linear forms. To Poncelet is also attributed the so-called principle of
continuity which roughly says that the projective properties of a figure are preserved
when the figure attains a limiting position. This remarkable principle allows one to
treat general cases by reducing them to a particular one. For instance, in projective
geometry, one can reduce the study of ellipses to the one of circles. One can also
reduce the study of general quadrilaterals to that of parallelograms. It is also by the
continuity principle that Poncelet could assert that points or lines, which disappear
at infinity, become imaginary and can therefore be recovered, and one can make ap-
propriate statements about them. Poncelet is also the first who considered that in the
(projective) plane, the points at infinity constitute a line.

Among the other founders of projective geometry, we mention J. Brianchon (1783–
1864), A. F. Möbius (1790–1868), M. Chasles (1793–1880), K. G. K. von Staudt
(1798–1867) and J. Steiner (1796–1863). We shall refer to some of them in the text
below. The Göttingen lecture notes of Klein [36] (1889–90) contain notes on the
history of projective geometry (p. 61 & ff.). We also refer the reader to the survey
[21] by Enriques, in which the works of Cayley and of Klein are analyzed. A concise
modern historical introduction to projective geometry is contained in Gray’s Worlds
out of nothing [26].

Perhaps Poncelet’s major contribution, besides the systematic use of polarity the-
ory, was to build a projective geometry which is free from the analytic setting of his
immediate predecessors and of the cross ratio (which he called the anharmonic ratio,
and so does Klein in the papers under consideration). Chasles, in his 1837 Aperçu
historique sur l’origine et le développement des méthodes en géométrie, highlights
the role of transformations in geometry, in particular in projective geometry, making
a clear distinction between the metric and the projective (which he calls “descrip-
tive”) properties of figures. Von Staudt insisted on the axiomatic point of view, and
he also tried to build projective geometry independently from the notions of length
and angle. One should also mention the work of E. Laguerre (1843–1886), who was
a student of Chasles and who, before Cayley, tried to develop the notions of Euclidean
angle and distance relatively to a conic in the plane, cf. [41] p. 66. Laguerre gave
a formula for angle measure that involves the cross ratio. It is important nevertheless
to note that Laguerre, unlike Klein, did not consider this as a possible definition of
angle. Laguerre’s formula originates in the following problem that he solves: Given
a system of angles A;B;C; : : : of a certain figure F in a plane, satisfying an equation

F.A;B; C; : : :/;

find a relation satisfied by the image angles A0; B;0 C 0; : : : when the figure F is trans-
formed by a projective transformation (which Laguerre calls a homography). The
solution that Laguerre gives is that A0; B;0 C 0; : : : satisfy the relation

F

�
log a

2
p�1;

log b
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where a; b; c; : : : is the cross ratio of the quadruple of lines made by two sides of the
angles A;B;C; : : : together the lines AP;AQ;BP;BQ;CP;CQ; : : : which are the
images of the lines made by A;B;C; : : : and the two cyclic points of the plane of
F . Laguerre notes that Chasles, in his Traité de géométrie supérieure [14], p. 446,
gave a solution to this problem in the case where the angles A;B;C; : : : share the
same vertex or when they are equal. It seems that neither Cayley nor Klein, at the
beginning of their work on this subject, were aware of Laguerre’s work. Klein men-
tioned Laguerre’s work in his later 1889–90 lecture notes ([36], p. 47 and 61). In the
Gesammelte Mathematische Abhandlungen ([38], vol. 1, p. 242) Klein declares that
at the time he wrote his paper [33], he was not aware of Laguerre’s ideas. This work
of Laguerre is also mentioned in [17] and [55]. See also [39] for notes of Klein on
Laguerre’s work, and [61] for some comments on Laguerre’s formulae.

For Klein, the subject of projective geometry includes both a synthetic and an an-
alytic aspect.16 In his historical remarks contained in his lecture notes ([36] p. 61), he
makes a distinction between the French and the German school of projective geom-
etry and he notes that in the beginning of the 1850s, the French school had a serious
advance over the German one, the latter still distinguishing between the projective
and the metric properties.17

It is also fair to recall that this nineteenth-century activity on projective geome-
try was preceded by works of the Greeks, in particular by the work of Apollonius
on the Conics (where the notion of a polar line with respect to a conic appears for
the first time), by works of Pappus, and by the much later works of several French
mathematicians, including G. Desargues (1591–1661), who tried to give a firm math-
ematical foundation to the perspective theory that was used on a heuristic basis by
painters and architects, and then, B. Pascal (1623–1662), who was influenced by De-
sargues, and G. Monge (1746–1818). Both Desargues and Pascal applied the ideas of
projective geometry in the study of conics, considering the work of Apollonius from
a new perspective. Monge is considered as the father of descriptive geometry (1795).

One important factor that emanates from all this is that the ellipse, parabola and
hyperbola can be considered as one and the same object, but seen from different
point of views. This is of paramount importance in the work of Klein in which we
are concerned.

16We can quote here Klein, from his Erlangen program [34]: “The distinction between modern synthetic
and modern analytic geometry must no longer be regarded as essential, inasmuch as both subject-matter and
methods of reasoning have gradually taken a similar form in both. We choose therefore in the text as a common
designation of them both the term projective geometry.”

17In his Erlangen program [34], Klein writes: “Metrical properties are to be considered as projective relations
to a fundamental configuration, the circle at infinity” and he adds in a note: “This view is to be regarded as one
of the most brilliant achievements of [the French school]; for it is precisely what provides a sound foundation
for that distinction between properties of position and metrical properties, which furnishes a most desirable
starting-point for projective geometry.” Regarding Klein’s comments on the difference between the French and
the German schools, one may remember the context of that time, namely the French–German war (July 19, 1870
– January 29, 1871), opposing the French Second Empire to the Prussian Kingdom and its allies; France suffered
a crushing defeat and lost the Alsace-Moselle, which became the German Reichsland Elsaß-Lothringen. In this
and in other of Klein’s historical notes, mathematics outweighed German nationalism.
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3 Non-Euclidean geometry

In this section, we recall a few facts on the birth and the reception of non-Euclidean
geometry, and on its relation with Klein’s work on projective geometry.

Nikolai Ivanovich Lobachevsky was the first to publish a treatise on hyperbolic
geometry, namely, his Elements of Geometry [44] (1829). The two other founders of
the subject are János Bolyai and Carl Friedrich Gauss. For more than 50 years, their
works remained unknown to the mathematical community. Lobachevsky’s work was
acknowledged as being sound only ten years after his death (1856), when Gauss’s
correspondence was published.18

This geometry first attracted the attention of Cayley and then Beltrami. Beltrami
started by publishing two articles on the subject, Saggio di Interpretazione della ge-
ometria non-Euclidea [4] (1868) which concerns the two-dimensional case and Teo-
ria fondamentale degli spazii di curvatura costante [6] (1868–69) which concerns the
three-dimensional case.19 We shall elaborate on these works below.

Lobachevsky, Bolyai and Gauss developed the hyperbolic geometry system start-
ing from the axiomatic point of view. This consists in drawing conclusions from the
axioms of Euclidean geometry with the parallel axiom replaced by its negation. No
Euclidean model is involved in this approach (and no Euclidean model existed at that
time). Beltrami, in his paper [4], was the first to establish the relation between hy-
perbolic geometry and negative curvature. None of the three founders of hyperbolic
geometry used the notion of curvature. It is true that at that time, curvature in the Rie-
mannian geometry sense was not yet discovered, but Gauss had already introduced

18In a letter he wrote to his friend the astronomer H. C. Schumacher, dated 28 November 1846, Gauss ex-
presses his praise for Lobachevsky’s work, cf. [24] p. 231–240, and it was after the publication of this letter that
Lobachevsky’s works attracted the attention of the mathematical community. Lobachevsky was never aware of
that letter. Gauss’s correspondence was published during the few years that followed Gauss’s death, between
1860 and 1865.

19Eugenio Beltrami (1835–1900) was born in a family of artists. He spent his childhood in a period of
political turbulence: the Italian revolutions, the independence war, and eventually the unification of Italy. He
studied mathematics in Pavia between 1853 and 1856, where he followed the courses of Francesco Brioschi, but
due to lack of money or may be for other reasons (Loria reports that Beltrami was expelled from the university
because he was accused of promoting disorders against the rector [47]), he interrupted his studies and took the
job of secretary of the director of the railway company in Verona. The first mathematical paper of Beltrami was
published in 1862. In the same year he got a position at the University of Bologna. He later moved between
several universities, partly because of the changing political situation in Italy, and he spent his last years at
the university of Rome. A stay in Pisa, from 1863 to 1866, was probably decisive for his mathematical future
research; he met there Betti and Riemann (who was in Italy for health reasons). Two of the most influential
papers of Beltrami are quoted in the present survey, [4] (1868) and [6] (1869). They were written during his
second stay in Bologna where he was appointed on the chair of rational mechanics. His name is attached to the
Beltrami equation which is at the basis of the theory of quasiconformal mappings, and to the Laplace–Beltrami
operator. Besides mathematics, Beltrami cultivated physics, in particular thermodynamics, fluid dynamics,
electricity and magnetism. He translated into Italian the work of Gauss on conformal representations. He
contributed to the history of mathematics by publishing a paper on the work of Gerolamo Saccheri (1667–1733)
on the problem of parallels (Un precursore italiano di Legendre e di Lobatschewski, 1889), comparing this work
to the works of Borelli, Clavius, Wallis, Lobachevsky and Bolyai on the same subject, and highlighting the
results on non-Euclidean geometry that are inherent in that work. Besides mathematics, Beltrami cultivated
music, and also politics. In 1899, he became (like his former teacher Brioschi) senator of the Kingdom of Italy.
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the notion of surface curvature and he had showed that it can be defined indepen-
dently of any embedding in an ambient Euclidean space. Gauss did not make explicit
the relation between curvature and the geometry of the hyperbolic plane.

The definition of spherical geometry as a system which can also be defined using
the notion of constant positive curvature is due to Riemann. It is also a geometrical
system which is at the same level as Euclidean geometry, where the “lines” are the
great circles of the sphere but where there are no disjoint lines. It is also good to
recall that, unlike hyperbolic geometry, the geometrical system of the sphere cannot
be obtained from the Euclidean one by modifying only one axiom, since not only the
Euclidean parallel axiom is not valid on the sphere, but other axioms as well, e.g. the
one saying that lines can be extended indefinitely.20 Riemann established the bases
of spherical geometry in his famous habilitation lecture Über die Hypothesen, welche
der Geometrie zu Grunde liegen (On the hypotheses which lie at the foundations of
geometry) (1854) [54]. It is generally accepted that the three geometries – Euclidean,
hyperbolic and spherical – appear clearly for the same time at the same level, as “the”
three geometries of constant curvature in the paper [33] of Klein. However, one can
mention a letter from Hoüel to De Tilly, dated April 12, 1872, in which he writes21

(see [29]):

The idea of the three geometries is not due to Klein: it goes back to Lejeune–
Dirichlet, who has thoroughly meditated upon this subject, but who, unfortunately,
did not leave us anything written.

20The intuition that there are exactly three geometries, which correspond to the fact that the angle sum in
triangles is less than, equal, or greater than two right angles (these are the hyperbolic, Euclidean and spherical
geometry respectively) can be traced back to older works. In the memoir Theorie der Parallellinien [42] of
Johann Heinrich Lambert, (1728–1777) written in 1766, that is, more than 100 years before Klein wrote his
memoir [33], the author, attempting a proof of Euclid’s parallel postulate, developed a detailed analysis of
geometries that are based on three assumptions, concerning a class of quadrilaterals, which are now called
Lambert or Ibn al-Haytham-Lambert quadrilaterals. These are quadrilaterals having three right angles, and
the assumptions Lambert made are that the fourth angle is either acute, right or obtuse. These hypothesis lead
respectively to hyperbolic, Euclidean and spherical geometry. One must add that Lambert was not the first to
make such a study of these quadrilaterals. Saccheri and, before him, Abū ‘Alı̄ Ibn al-Haytham and ‘Umar al-
Khayyām (1048–1131) made similar studies. Of course, in all these works, the existence of hyperbolic geometry
was purely hypothetical. The approaches of these authors consisted in assuming that such a geometry exists and
in trying to deduce a contradiction. We refer the interested reader to the recent edition of Lambert’s work [48],
with a French translation and mathematical comments.

21A few words are needed on Hoüel and de Tilly, two major major figures in the history of non-Euclidean
geometry but whose names remain rather unknown to most geometers. Guillaume-Jules Hoüel (1823–1886)
taught at the University of Bordeaux. He wrote geometric treatises giving a modern view on Euclid’s Elements.
He was working on the impossibility of proving the parallel postulate when, in 1866, he came across the writ-
ings of Lobachevsky, and became convinced of their correctness. In the same year, he translated into French
Lobachevsky’s Geometrische Untersuchungen zur Theorie der Parallellinien together with excerpts from the
correspondence between Gauss and Schumacher on non-Euclidean geometry, and he published them in the
Mémoires de la Société des Sciences physiques et naturelles de Bordeaux, a journal of which he was the editor.
Hoüel also translated into French and published in French and Italian journals works by several other authors
on non-Euclidean geometry, including Bolyai, Beltrami, Helmholtz, Riemann and Battaglini. Barbarin, in his
book La Géométrie non Euclidienne ([3] p. 12) writes that Hoüel, “who had an amazing working force, did
not hesitate to learn all the European languages in order to make available to his contemporaries the most re-
markable mathematical works.” Hoüel also solicited for his journal several papers on hyperbolic geometry, after
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In Klein’s paper [33], while the three geometries are placed at the same level of
importance, Euclidean geometry acts as a transitional geometry between the other
two. Klein writes about this:

Straight lines have no points at infinity, and indeed one cannot draw any parallel at
all to a given line through a point outside it.

A geometry based on these ideas could be placed alongside ordinary Euclidean
geometry like the above-mentioned geometry of Gauss, Lobachevsky and Bolyai.
While the latter gives each line two points at infinity, the former gives none at all
(i.e. it gives two imaginary points). Between the two, Euclidean geometry stands as
a transitional case; it gives each line two coincident points at infinity.

We develop this idea of “transitional geometry” in our paper [1] in this volume.
Today, people are so much used to these ideas that it is hard for them to appreciate

their novelty for that epoch and their importance. Let us recall in this respect that
Klein’s paper came out only three years after Beltrami published his two famous
papers in which he confirmed that Lobachevsky’s researches on hyperbolic geometry
were sound.

As we shall see later in this paper, to prove that Cayley’s constructions lead to the
non-Euclidean geometries, Klein argued in a synthetic way, at the level of the axioms,
showing that the characteristics of the Lobachevsky and of the spherical geometries
are satisfied in the geometry defined by this distance function. But Klein also de-
scribed the differential-geometric aspects, introducing a notion of curvature which he
showed is equivalent to Gauss’s surface curvature.

In the rest of this paper, we shall present the basic ideas contained in Klein’s two
papers, making connections with other ideas and works on the same subject.

4 Preliminary remarks on Klein’s papers
In this section, we start by summarizing the important ideas contained in Klein’s two
papers. We then discuss the reception of these ideas by Klein’s contemporaries and by
other mathematicians. We then make some remarks on the names hyperbolic, elliptic
and parabolic geometries that were used by Klein.

the French Academy of Sciences, in the 1870s, decided to refuse to consider papers on that subject. We refer
the interested reader to the article by Barbarin [2] and the forthcoming edition of the correspondence between
Hoüel and de Tilly [29]. Beltrami had a great respect for Hoüel, and there is a very interesting correspondence
between the two men, see [8]. It appears from these letters that Beltrami’s famous Saggio di Interpretazione
della geometria non-Euclidea [4] arose from ideas that he got after reading Lobachevsky’s Geometrische Unter-
suchungen zur Theorie der Parallellinien in the French translation by Hoüel, see [8] p. 9. For a detailed survey
on the influence of Hoüel’s work see [10].

Joseph-Marie de Tilly (1837–1906) was a member of the Royal Belgian Academy of Sciences, and he was
also an officer in the Belgian army, teaching mathematics at the Military School. In the 1860s, de Tilly, who was
not aware of the work of Lobachevsky, developed independently a geometry in which Euclid’s parallel postulate
does not hold. One of his achievements is the introduction of the notion of distance as a primary notion in the
three geometries: hyperbolic, Euclidean and spherical. He developed an axiomatic approach to these geometries
based on metric notions, and he highlighted some particular metric relations between finite sets of points; see
for instance his Essai sur les Principes Fondamentaux de la Géométrie et de la Mécanique [59] and his Essai
de Géométrie analytique générale [60].
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Klein’s major contributions in these two papers include the following:

1. An explanation of the notion of Cayley measure and its representation, and its
inclusion in two important settings: transformation groups and curvature.

2. A realization of Lobachevsky’s geometry as a metric space (and not only as
a system of axioms).

3. The construction of a new model of Lobachevsky’s geometry, by taking, in
Cayley’s construction, the “absolute” to be an arbitrary real second-degree
curve in the projective plane and showing that the interior of that curve,
equipped with some adequate structure, is a model of Lobachevsky’s geom-
etry. Although the idea for the construction originates in Cayley’s work (Cay-
ley gave a formula for a distance function without realizing that the resulting
metric space is the Lobachevsky space), and although the construction of such
a model for the hyperbolic plane (but without the distance function) had been
made three years earlier by Beltrami in this paper [4] (1868) in which he re-
alized that the Euclidean segments of the disk are models for the geodesics
of hyperbolic space, Klein gave the first explicit distance function for hyper-
bolic geometry. At the same time, he made the first link between hyperbolic
geometry and projective geometry.

4. A unified setting for Euclidean, hyperbolic and spherical geometries, as these
three geometries can be considered as projective geometries. Although it is
well known that Klein gave a formula for the hyperbolic metric using cross
ratio, it is rather unknown to modern geometers that Klein also gave in the
same way formulae for the elliptic and for the Euclidean distance functions
using the cross ratio.

Cayley expressed the advantage of Klein’s distance formula in his comments
on his paper [12] contained in his Collected mathematical papers edition ([13]
Vol. II, p. 604):

In his first paper, Klein substitutes, for my cos�1 expression for the distance
between two points,22 a logarithmic one; viz. in linear geometry if the two
fixed points are A;B then the assumed definition for the distance of any two
points P;Q is

dist: .PQ/ D s log
AP:BQ

AQ:BP
I

this is a great improvement, for we at once see that the fundamental relation,
dist: .PQ/C dist: .QR/ D dist: .PR/, is satisfied.

22The formulae to which Cayley refers are contained in his paper [12] p. 584–585. After giving these formulae
in the case where the absolute is a general conic, he writes:

The general formulae suffer no essential modifications, but they are greatly simplified by taking for
the point-equation of the absolute

x2 C y2 C z2 D 0;
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We note that Cayley did not introduce the cross ratio in his definition of dis-
tances, but he showed that his formulae are invariant by the action of the pro-
jective geometry transformations.

5. Likewise, Klein gave a formula for the dihedral angle between two planes as
a cross ratio between four planes, the additional two planes being the tangent
planes to the fixed conic passing through the intersection of the first two planes.

6. The conclusion that each of the three geometries is consistent if projective
geometry is consistent.

7. The idea of a transitional geometry. This is a geometrical system in which
one can transit continuously from spherical to hyperbolic geometry, passing
through Euclidean geometry.

8. The introduction of the names hyperbolic, parabolic and elliptic for the Loba-
chevsky, Euclidean and spherical geometries respectively, thus making the re-
lation with other settings where the three names were already used. We shall
discuss this at the end of this section.

We shall elaborate on all these items below.
Klein’s papers are sometimes difficult to read and they were received by the math-

ematical community in diverse manners. Let us quote, for example, Darboux, from
his obituary concerning Henri Poincaré [18]:

Mr. Felix Klein is the one who removed these very serious objections [concerning
non-Euclidean geometry] by showing in a beautiful memoir that a geometry invented
by the famous Cayley and in which a conic called the absolute provides the elements
of all measures and enables, in particular, to define the distance between two points,
gives the most perfect and adequate representation of non-Euclidean geometry.

or, what is the same, for the line-equation

�2 C �2 C �2 D 0:

In fact, we then have for the expression of the distance of the points .x; y; z/; .x0; y0; z0/,

cos�1 xx0 C yy0 C zz0p
x2 C y2 C z2

p
x02 C y02 C z02

I

for that of the lines .�; �; �/; .�0; �0; � 0/,

cos�1 �� C ��0 C �� 0p
�2 C �2 C �2

p
�02 C �02 C � 02

I

and that for the point .x; y;z/ and the line .�0; �0; � 0/,

cos�1 �0xC �0y C � 0zp
x2 C y2 C z2

p
�02 C �02 C � 02

:

The reader will notice the analogy between these formulae and the familiar formula for distance in spherical
geometry (the “angular distance”), which, Klein also establishes in his paper [33]; see Formulae (5.7) and (5.8)
in the present paper.
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On the other hand, Genocchi23 wrote, regarding the same matter ([25] p. 385):

From the geometric point of view, the spirit may be shocked by certain definitions
adopted by Mr. Klein: the notions of distance and angle, which are so simple, are
replaced by complicated definitions [. . . ] The statements are extravagant.

Hans Freudenthal (1905–1990), talking about Klein’s analysis of the work of
von Staudt on the so-called “fundamental theorem of projective geometry” in which
Klein discusses some continuity issues that were missing in von Staudt’s arguments,24

writes [23]:

[In 1873], logical analysis was not the strong point of Klein, and what he wrote on
that question in the years that followed is as much confusing as possible.

It is true that Klein was much more interested in ideas (and he had profound ideas)
than in writing up rigorous proofs.

We end this section with two remarks. The first one concerns the title of the two
papers [33] and [35], and the second concerns the adjectives “hyperbolic”, elliptic”
and “parabolic”.

Klein’s title, On the so-called Non-Euclidean geometry, may be considered as
having a negative connotation, and indeed it does. This is also the title of a note
(Note No. 5) at the end of his Erlangen program text. In that note, Klein writes:

We associate to the name Non-Euclidean geometry a crowd of ideas that have noth-
ing mathematical, which are accepted on the one hand with as much enthusiasm that
they provoke aversion on the other hand, ideas in which, in any case, our exclusively
mathematical notions have nothing to do.

However, Klein, in his later writings, used extensively the term “non-Euclidean
geometry”, without the adjective “so-called”.

Now about the names of the three geometries.
Klein coined the expressions “elliptic”, “hyperbolic” and “parabolic” geometry as

alternative names for spherical, Lobachevsky and Euclidean geometry respectively.
In his Über die sogenannte Nicht-Euklidische Geometrie [33], he writes (Stillwell’s
translation p. 72):

23Angelo Genocchi (1817–1889) was an Italian mathematician who made major contributions in number
theory, integration and the theory of elliptic functions. Like Cayley, he worked for several years as a lawyer,
and he taught law at the University of Piacenza, but at the same time he continued cultivating mathematics with
passion. In 1859, he was appointed professor of mathematics at the University of Torino, and he remained there
until 1886. During the academic year 1881–82, Guiseppe Peano served as his assistant, and he subsequently
helped him with his teaching, when Genocchi became disabled after an accident. Genocchi’s treatise Calcolo
differenziale e principii di calcolo integrale con aggiunte del Dr. Giuseppe Peano, written in 1864, was famous
in the Italian universities.

24This continuity issue is mentioned in Chapter 2 of this volume [27], and its is discussed in detail in [62].
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Following the usual terminology in modern geometry, these three geometries will
be called hyperbolic, elliptic or parabolic in what follows, according as the points
at infinity of a line are real, imaginary or coincident.

The expression “following the usual terminology” may be related to the fact that
in the projective plane, a hyperbola meets the line at infinity in two points, a parabola
meets it is one point and an ellipse does not meet it at all. In a note in [57] (Note
33), Stillwell recalls that before Klein, the points on a differentiable surface were
called hyperbolic, elliptic or parabolic when the principal tangents at these points are
respectively real, imaginary or coincident. He also recalls that Steiner used these
names for certain surface involutions, an involution being called hyperbolic, elliptic
or parabolic when the double points arising under it are respectively real, imaginary
or coincident. The name non-Euclidean geometry is due to Gauss.25

Soon after Klein introduced this terminology, Paul du Bois-Reymond (1831–
1889) introduced (in 1889) the classification of second-order differential operators
into “elliptic”, “hyperbolic” and “parabolic”.

Let us note finally that it is easy to be confused concerning the order and the
content of the two papers of Klein, if one looks at the French versions. The pa-
pers appeared in 1871 and 1873 respectively, under the titles Über die sogenannte
Nicht-Euklidische Geometrie and Über die sogenannte Nicht-Euklidische Geometrie
(Zweiter Aufsatz). In 1871, and before the first paper [33] was published, a short ver-
sion, presented by Clebsch,26, appeared in the Nachrichten von der Kgl. Gesellschaft
der Wissenschaften zu Göttingen, under the title F. Klein, Über die sogenannte Nicht-
Euklidische Geometrie. Vorgelegt von A. Clebsch. The same year, a translation of
this short paper appeared under the title Sur la géométrie dite non euclidienne, de
Félix Klein, in the Bulletin de sciences mathématiques et astronomiques, translated
by Hoüel. A translation by Laugel of the first paper (1871) appeared much later in
the Mémoires de la Faculté des Sciences de Toulouse under the title Sur la Géométrie
dite non euclidienne, par Mr. Félix Klein, in 1898. In the volume [57] (1996) which
contains translations by Stillwell of some of the most important sources on non-
Euclidean geometry, only the first paper [33] by Klein is included, under the title
On the so-called non-Euclidean geometry. It is followed by a short excerpt (6 lines)
of the second paper.

25Gauss used it in his correspondence with Schumacher.
26Alfred Clebsch (1833–1872) was a young professor at Göttingen, who was responsible for Klein’s first

invitation at that university, in 1871. He was well aware of Cayley’s work on invariant theory, and he transmitted
it to Klein. Klein stayed in Göttingen a few months, and then moved to Erlangen, where he was appointed
professor, again upon the recommendation of Clebsch. He came back to the University of Göttingen in 1886,
and he stayed there until his retirement in 1913. Clebsch was also the founder of the Mathematische Annalen,
of which Klein became later the main editor. See also [27].



108 Norbert A’Campo, Athanase Papadopoulos

5 The work of Cayley

In this section, we comment on the idea of Cayley27 which acted as a motivation for
Klein’s work.

Let us quote again Klein, from the introduction to his paper [33]:

It is our purpose to present the mathematical results of these works [of Gauss,
Lobachevsky and Bolyai], insofar as they relate to the theory of parallels, in a new
and intuitive way, and to provide a clear general understanding.

The route to this goal is through projective geometry. By the results of Cayley,
one may construct a projective measure on ordinary space using an arbitrary second
degree surface as the so-called fundamental surface. Depending on the type of the
second degree surface used, this measure will be a model for the various theories of
parallels in the above-mentioned works. But it is not just a model for them; as we
shall see, it precisely captures their inner nature.

The paper to which Klein refers is Cayley’s Sixth Memoir upon Quantics28 [12]
which appeared in 1859. In this paper, Cayley asserts that descriptive geometry
(which is the name he used for projective geometry) “is all geometry”, an idea which
was taken up by Klein later on.29 In particular, Cayley considered that projective
geometry includes metrical geometry (which is the name he used for Euclidean ge-
ometry) as a special case. In Cayley’s words: “A chief object of the present memoir

27Arthur Cayley (1821–1895) was born in the family of an English merchant who was settled in Saint-
Petersburg. The family returned to England when the young Arthur was eight. Cayley is one of the first
discoverers of geometries in dimensions greater than three. To him is attributed the introduction of the term
“n-dimensional space” and the invention of matrices, which lead to examples of n2-dimensional spaces (cf.
Cayley’s Memoir on the theory of matrices, Phil. Trans. of the Royal Society of London, 1858). Cayley is
also one of the main inventors of the theory of invariants. These include invariants of algebraic forms (the
determinant being an example), and algebraic invariants of geometric structures and the relations they satisfy
(“syzygies”). Cayley studied mathematics and law. As a student in mathematics, he was very talented and he
wrote several papers during his undergraduate studies, three of which were published in the Cambridge Math-
ematical Journal. The subject included determinants, which became later one of his favorite topics. After
completing a four-year position at Cambridge university, during which he wrote 28 papers for the Cambridge
journal, Cayley did not succeed in getting a job in academics. He worked as a lawyer during 14 years, but he
remained active in mathematics; he wrote during these years about 250 mathematical papers. In 1863, he was
appointed professor of mathematics at Cambridge. His list of papers includes about 900 entries, on all fields
of mathematics of his epoch. The first definition of an abstract group is attributed to him, cf. [11]. Cayley
proved that every finite group G is isomorphic to a subgroup of a symmetric group on G. His name is attached
to the famous Cayley graph of a finitely generated group, an object which is at the basis of modern geometric
group theory. Cayley was the first mathematician who wrote on the work on Lobachevsky (cf. Cayley’s Note
on Lobachevsky’s imaginary geometry, Philosophical Magazine, 1865, p. 231–233), but he failed to realize the
importance of these ideas. Referring to Lobachevsky’s trigonometric formulae, Cayley writes: “I do not un-
derstand, but it would be very interesting to find a real geometrical interpretation of the last mentioned system
of equations.” In his review of Cayley’s Collected Mathematical Papers edition in 13 volumes, G. B. Halsted
writes: “‘Cayley not only made additions to every important subject of pure mathematics, but whole new sub-
jects, now of the most importance, owe their existence to him. It is said that he is actually now the author most
frequently quoted in the living world of mathematicians” [28]. We refer the reader to the biography by Crilly
[15] which is regrettably short of mathematical detail, but otherwise very informative and accurate.

28In Cayley’s terminology, a quantic is a homogeneous polynomial.
29In fact, the statement is also true if we interpret it in the following sense (which, however, is not what

Cayley meant): Most of the geometers at the time Cayley made that statement worked on projective geometry.
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is the establishment, upon purely descriptive principles, of the notion of distance.”
At first sight, there is something paradoxical in this statement, because length is not
a projective notion. In fact, in his foundational work on descriptive geometry, and in
particular in his famous 1822 Traité [49], Poncelet had already stressed on the distinc-
tion between the metrical properties (namely, those that involve distance and angle),
which are not preserved by projective transformations, and the projective (which he
calls “descriptive”) properties, which are precisely the properties preserved by pro-
jective transformations, e.g. alignment of points, intersections of lines, etc. Thus,
in principle, there are no distances, no circles and no angles in projective geometry.
Cayley, followed by Klein, was able to define such notions using the concepts of
projective geometry by fixing a quadric in projective space, in such a way that these
properties are invariant under the projective transformations that fix the quadric.

The cross ratio of four points is a projective invariant, and in some sense it is
a complete projective invariant, since a transformation of projective space which pre-
serves the cross ratio of quadruples of aligned points is a projective transformation.
Therefore, it is natural to try to define distances and angles using the cross ratio. This
is what Klein did. Likewise, it was an intriguing question, addressed by Klein, to try
to express the concept of parallelism in Euclidean and in hyperbolic geometry using
projective notions, although parallelism is a priori not part of projective geometry.

Cayley defined a geometry which is non-Euclidean, but did not realize that it coin-
cides with the Lobachevsky geometry. Let us quote Cayley’s paper (the conclusion):

I have, in all that has preceded, given the analytical theory of distance along with
the geometrical theory, as well for the purpose of illustration, as because it is impor-
tant to have an analytical expression of a distance in terms of the coordinates; but
I consider the geometrical theory as perfectly complete in itself: the general result
is as follows; viz. assuming in the plane (or space of geometry of two dimensions)
a conic termed the absolute, we may by means of this conic, by descriptive construc-
tions, divide any line or range of points whatever, and any point or pencil of lines
whatever, into an infinite series of infinitesimal elements, which are (as a definition
of distance) assumed to be equal; the number of elements between any two points of
the range or two lines of the pencil, measures the distance between the two points or
lines; and by means of the pencil, measures the distance between the two points or
lines; and by means of the quadrant, as a distance which exists as well with respect
to lines as points, we are enabled to compare the distance of two lines with that of
two points; and the distance of a point and a line may be represented indifferently as
the distance of two points, or as the distance of two lines.

In ordinary spherical geometry, the theory undergoes no modification whatever;
the absolute is an actual conic, the intersection of the sphere with the concentric
evanescent sphere.

In ordinary plane geometry, the absolute degenerates into a pair of points, viz.
the points of intersection of the line at infinity with any evanescent circle, or what is
the same thing, the absolute is the two circular points at infinity. The general theory
is consequently modified, viz. there is not, as regards points, a distance such as the
quadrant, and the distance of two lines cannot be in any way compared with the
distance of two points; the distance of a point from a line can be only represented as
a distance of two points.
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I remark in conclusion that, in my point of view, the more systematic course in
the present introductory memoir on the geometrical part of the subject of quantics,
would have been to ignore altogether the notions of distance and metrical geometry;
for the theory in effect is, that the metrical properties of a figure are not the properties
of the figure considered per se apart from everything else, but its properties when
considered in connexion with another figure, viz. the conic termed the absolute. The
original figure might comprise a conic; for instance, we might consider the proper-
ties of the figure formed by two or more conics, and we are then in the region of pure
descriptive geometry by fixing upon a conic of the figure as a standard of reference
and calling it the absolute. Metrical geometry is thus a part of descriptive geometry,
and descriptive is all geometry and reciprocally; and if this can be admitted, there
is no ground for the consideration in an introductory memoir, of the special subject
of metrical geometry; but as the notions of distance and of metrical geometry could
not, without explanation, be thus ignored, it was necessary to refer to them in order
to show that they are thus included in descriptive geometry.

In his Lectures on the development of mathematics in the XIXth century [40]
(1926–1927), Klein recounts how he came across Cayley’s ideas (p. 151):

In 1869, I had read Cayley’s theory in the version of Fiedler30 of Salmon’s Conics.
Then, I heard for the first time the names of Bolyai and Lobatscheffski, from Stolz,31

in the winter of 1869/70, in Berlin. From these indications I had understood very
little things, but I immediately got the idea that both things should be related. In
February 1870, I gave a talk at Weierstrass’s seminar on the Cayley metric.32 In
my conclusion, I asked whether there was a correspondence with Lobatscheffski.
The answer I got was that these were two very different ways of thinking, and that
for what concerns the foundations of geometry, one should start by considering the
straight line as the shortest distance between two points. I was daunted by this
negative attitude and this made me put aside the insight which I had. [. . . ]

In the summer of 1871, I came back to Göttingen with Stolz. [. . . ] He was
above all a logician, and during my endless debates with him, the idea that the non-
Euclidean geometries were part of Cayley’s projective geometry became very clear
to me. I imposed it on my friend after a stubborn resistance. I formulated this idea in
a short note that appeared in the Göttingen Nachrichten, and then in a first memoir,
which appeared in Volume 4 of the Annalen.

A couple of pages later, Klein, talking about his second paper [35], writes (see
also [7]):

I investigated in that paper the foundations of von Staudt’s [geometric] system, and
had a first contact with modern axiomatics. [. . . ] However, even this extended
presentation did not lead to a general clarification. [. . . ] Cayley himself mistrusted
my reasoning, believing that a “vicious circle” was buried in it.

30Wilhelm Fiedler (1832–1911)
31Otto Stolz (1842–1905) was a young mathematician at the time when Klein met him. He obtained his

habilitation in Vienna in 1867 and, starting from 1869, he studied in Berlin under Weierstrass, Kummer and
Kronecker. He attended Klein’s lecture in 1871 and he remained in contact with him. He became later a suc-
cessful textbook writer.

32In 1870, Weierstrass started at the university of Berlin a seminar on non-Euclidean geometry.
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Cayley was more interested in the foundational aspect of projective geometry and
his approach was more abstract than that of Klein. In a commentary on his paper [12]
in his Collected mathematical papers edition [13] (Vol. II, p. 605), he writes:

As to my memoir, the point of view was that I regarded “coordinates” not as dis-
tances or ratios of distances, but as an assumed fundamental notion not requiring or
admitting of explanation. It recently occurred to me that they might be regarded as
mere numerical values, attached arbitrarily to the point, in such wise that for any
given point the ratio x W y has a determinate numerical value, and that to any given
numerical value of x W y there corresponds a single point. And I was led to interpret
Klein’s formulæ in like manner; viz. considering A;B;P;Q as points arbitrarily
connected with determinate numerical values a; b;p; q, then the logarithm of the
formula would be that of .a � p/.b � q/� .a � q/.b � q/. But Prof. Klein called
my attention to a reference (p. 132 of his second paper) to the theory developed in
Staudt’s Geometrie der Lage, 1847. The logarithm of the formula is log.A; B;P;Q/
and, according to Staudt’s theory .A;B;P;Q/, the anharmonic ratio of any four
points, has independently of any notion of distance the fundamental properties of
a numerical magnitude, viz. any two such ratios have a sum and also a product,
such sum and product being each of them like a ratio of four points determinable by
purely descriptive constructions.

Cayley refers here to von Staudt’s notion of a point as a harmonic conjugate
relatively to three other points, a definition which was also meant to be independent
of any notion of distance ([56] p. 43).

Let us end this section by quoting J. E. Littlewood from his Miscellany [43],
where he stresses the importance of Cayley’s idea:

The question recently arose in a conversation whether a dissertation of 2 lines could
deserve and get a Fellowship. I had answered this for myself long before; in mathe-
matics the answer is yes. Cayley’s projective definition of length is a clear case if we
may interpret “2 lines” with reasonable latitude. With Picard’s Theorem33 it could
be literally 2, one of statement, one of proof. [. . . ] With Cayley the importance of
the idea is obvious at first sight.”34

Finally, we point out to the reader that when Cayley talks about a metric space,
he does not necessarily mean a metric space as we intend it today. We recall that the
axioms of a distance function were formulated by Maurice Fréchet (1878–1973) in
his thesis, defended in 1906. The idea of a “metric” was somehow vague for Cayley
and Klein, but it included nonnegativeness and the triangle inequality.

33Littlewood is talking here about Picard’s theorem saying that if f W C ! C is an entire and non-constant
function, then it is either surjective or it misses only one point.

34Littlewood adds: With Picard the situation is clear enough today (innumerable papers have resulted from
it). But I can imagine a referee’s report: “Exceedingly striking and a most original idea. But, brilliant as it
undoubtedly is, it seems more odd than important; an isolated result, unrelated to anything else, and not likely
to lead anywhere.”
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6 Beltrami and the Beltrami–Cayley–Klein model
of the hyperbolic plane

Beltrami’s discovery of the Euclidean model for hyperbolic space was a major step
in the development of hyperbolic geometry. Although Beltrami did not write any
major text on the relation between non-Euclidean and projective geometry, he was
well aware of the works of Cayley and Klein, and he could have contributed to it. Let
us start by quoting Klein on Beltrami’s involvement in this subject. This is extracted
from the introduction to [33] (Stillwell’s translation p. 73):

Since it will be shown that the general Cayley measure in space of three dimensions
covers precisely the hyperbolic, elliptic and parabolic geometries, and thus coin-
cides with the assumption of constant curvature, one is led to the conjecture that
the general Cayley measure agrees with the assumption of constant curvature in any
number of dimensions. This in fact is the case, though we shall not show it here. It
allows one to use formulae, in any spaces of constant curvature, which are presented
here assuming two or three dimensions. It includes the facts that, in such spaces,
geodesics can be represented by linear equations, like straight lines, and that the el-
ements at infinity form a surface of second degree, etc. These results have already
been proved by Beltrami, proceeding from other considerations; in fact, it is only
a short step from the formulae of Beltrami to those of Cayley.

In fact, Beltrami, two years before Klein published his first paper [33], wrote the
following to Hoüel (letter dated July 29, 1869 [8] p. 96–97).35

The second thing [I will add] will be the most important, if I succeed in giving it
a concrete form, because up to now it only exists in my head in the state of a vague
conception, although without any doubt it is based on the truth. This is the conjecture
of a straight analogy, and may be an identity, between pseudo-spherical geometry36

and the theory of Mr. Cayley on the analytical origin of metric ratios, using the
absolute conic (or quadric). However, since the theory of invariants plays there
a rather significant role and because I lost this a few years ago, I want to do it again
after some preliminary studies, before I address this comparison.

Three years later, in a letter to Hoüel, written on July 5, 1872, Beltrami acknowl-
edges the fact that Klein outstripped him ([8] p. 165):

The principle which has directed my analysis37 is precisely that which Mr. Klein
has just developed in his recent memoir38 on non-Euclidean geometry, for 2-dimen-
sional spaces. In other words, from the analytic point of view, the geometry of spaces
of constant curvature is nothing else than Cayley’s doctrine of the absolute. I regret
very much to have let Mr. Klein supersede me on that point, on which I had already
assembled some material, and it was my mistake of not giving enough weight to

35The translation from the French are ours.
36This is the term used by Beltrami to denote hyperbolic geometry.
37Beltrami refers here to a note [5] which he had just published in Annali di Matematica.
38Beltrami refers here to Klein’s paper [33].
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this matter. Beside, this point of view is not absolutely novel, and it is precisely
for that reason that I was not anxious to publish my remark. It is intimately related
to an already old relation of Mr. Chasles concerning the angle between two lines
regarded as an anharmonic ratio (Geom. sup. art. 181) [14]) and to a theorem of
Mr. Laguerre Verlay39 (Nouv. Ann. 1853, Chasles, Rapport sur les progrès de la
géométrie, p. 313). All that Cayley did is to develop an analytic algorithm and,
above all, to show that in the general geometry, the theory of rectilinear distances
responds exactly to that of angle distances in ordinary geometry. He also showed
how and under what circumstances the Euclidean theory of distance differs from the
general theory, and how it can be deduced from it by going to the limit.

Finally, we quote a letter that Beltrami wrote in the same year to D’Ovidio40

(December 25, 1872, cited in [47] p. 422–423).

When I learned about the theory of Cayley, I realized that his absolute was precisely
this limit locus which I obtained from the equation w D 0, or x D 0, and I under-
stood that the identity of the results was due to the following circumstance, that is, in
(the analytic) projective geometry one only admits a priori that the linear equations
represent lines of shortest distance, so that in this geometry one studies, without
realizing it, spaces of constant curvature. I was wrong in not publishing this obser-
vation, which has been made later on by Klein, accompanied by many developments
of which, for several of them, I had not thought.

We saw that in the case where the fundamental conic used in Cayley’s con-
struction is real, the measure defined on the interior of the conic gives a model of
Lobachevsky’s geometry. Klein recovered in this way the model which Beltrami had
introduced in his paper [4] in which he noticed that the Euclidean straight lines in the
unit disc behave like the non-Euclidean geodesics. It was Klein who provided this
model with an explicit distance function, namely, the distance defined by the loga-
rithm of the cross ratio, and he also noticed that the circle, in Beltrami’s model, can
be replaced by an ellipse.

Although this was not his main goal, Klein used this model to discuss the issue
of the non-contradiction of hyperbolic geometry. This was also one of Beltrami’s
achievements in his paper [4].41 We mention that the non-contradiction issue as well
as the relative non-contradiction issue (meaning that if one geometry is contradictory,
then the others would also be so) among the three geometries was one of the major

39Edmond Laguerre-Verlay (or, simply, Laguerre) (1834–1886) studied at the École Polytechnique, and after
that he became an officer in the army. In 1883, he was appointed professor at Collège de France and two years
later he was elected at the French Academy of Sciences. Laguerre was a specialist of projective geometry and
analysis. His name is connected with orthogonal polynomials (the Laguerre polynomials). He is the author of
140 papers and his collected works were edited by Hermite, Poincaré and Rouché.

40Enrico D’Ovidio (1842–1933) was an Italian geometer who is considered as the founder of the famous Turin
geometry school. Like Klein, he worked on the question of deriving the non-Euclidean metric function from
concepts of projective geometry, paving the way for subsequent works of Giuseppe Veronese, Corrado Segre
and others. D’Ovidio was known for his outstanding teaching, his excellent books, and his care for students.
Guiseppe Peano, Corrado Segre, Guido Castelnuovo and Beppo Levi were among his students.

41We recall that this model was discovered by Beltrami four years before he discovered his famous pseudo-
spherical model.
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concerns of Lobachevsky, see e.g. his Pangeometry and the comments in the volume
[45]. It is also important to recall that while Beltrami’s Euclidean model showed
that hyperbolic geometry is consistent provided Euclidean geometry is, Klein’s work
shows that Euclidean, spherical and hyperbolic geometries are consistent provided
projective geometry is consistent.

We also mention that in �14 of the paper [33], while he computed the curvature
of the metric, Klein obtained the expression, in polar coordinates, of the so-called
Poincaré metric of the disk.

In his lecture notes [36] (p. 192), Klein writes the following:42

[. . . ] it is the merit of Beltrami’s Saggio, to emphatically have called attention to the
fact that the geometry on surfaces of constant negative curvature really corresponds
to non-Euclidean hyperbolic geometry.

On p. 240, Klein discusses topology, and says that for 2-dimensional spaces of pos-
itive curvature, instead of working like Beltrami on the sphere, where two geodesic
lines intersect necessarily intersect in two points, one can work in elliptic space,
where geodesics intersect in only one point.43

7 The construction of measures
We now return to Klein’s papers. The core of the paper [33] starts at �3, where Klein
describes the construction of one-dimensional projective measures, that is, measures
on lines and on circles. The one-dimensional case is the basic case because higher-
dimensional measures are built upon this case.44 Klein refers to the one-dimensional
case as the first kind. There are two sorts of measures to be constructed: measures
on points and measures on angles. The measure function on points satisfies the usual
properties of a distance function45 except that it can take complex values. The mea-
sure for angles is, as expected, defined only up to the addition of multiples of 2� ,
and at each point it consists of a measure on the pencil of lines that pass through that
point. It can also take complex values. Klein specifies the following two properties
that ought to be satisfied by measures:

1. the measures for points satisfy an additivity property for triples of points which
are aligned;

2. the two measures (for points and for lines) satisfy the property that they are not
altered by a motion in space.

42The English translations of our quotes from [36] were made by Hubert Goenner.
43 It is interesting that in the 1928 edition of Klein’s course on non-Euclidean geometry [37], the editor

Rosemann removed almost all of Klein’s remarks concerning Beltrami’s contributions made in his course of
1989/90 [36] while Klein was alive. (This remark was made to the authors by Goenner.)

44In fact, Klein considers only spaces of dimensions two and three. At the end of his memoir, he says that the
ideas can obvioulsy be generalized to higher dimensions.

45It is considered that the first formal statement of the axioms of a distance function as we know them today
is due to Fréchet in his thesis [22] (1906), but the nineteenth-century mathematicians already used this notion,
and they were aware of geometries defined by distance functions.
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Property (a) says that the projective lines are geodesics for these measures. A met-
ric that satisfies this property is called (in modern terms) projective. The motions that
are considered in Property (b) are the projective transformations that preserve a conic,
which is termed the basic figure. Klein then addresses the question of the classifica-
tion of measures, and he notes that this depends on the classification of the transfor-
mations of the basic figures, which in turn depends on the number of fixed points of
the transformation. Since the search for fixed points of such transformations amounts
to the search for solutions of a degree-two equation, the transformations that preserve
the basic figure fall into two categories:

1. Those that fix two (real or imaginary) points of the basic figure, and this is the
generic case. They are termed measures of the first kind.

2. Those that fix one point of the basic figure. They are termed measures of the
second kind.

Klein describes in detail the construction of measures on lines. The overall con-
struction amounts to a division of the circle (seen as the projective line) into smaller
and smaller equal parts, using a projective transformation. Thus, if we set the total
length of the circle to be 1, the first step will provide two points at mutual distance 1

2
,

the second step will provide three points at mutual distance 1
3

, and so forth. Passing
to the limit, we get a measure on the circle which is invariant by the action of the
given projective transformation.

More precisely, Klein starts with a transformation of the projective line of the form
z 7! �z, with � real and positive. The transformation has two fixed points, called
fundamental elements, the points 0 and 1. Applying the transformation to a point
z1 on the line, we obtain the sequence of points z1; �z1; �2z1; �3z1; : : :. In order to
define the measure, Klein divides, for any integer n, the line into n equal parts using
the transformation z0 D �

1
n z. The nth root determination is chosen in such a way

that �
1
n z lies between z and �z. The distance between two successive points is then

defined as the 1
n

th of the total length of the line. Iterating this construction, for any

two integers ˛ and ˇ, the distance between z1 and a point of the form �˛C ˇ
n z1 is set

to be the exponent ˛ C ˇ
n

, that is, the logarithm of the quotient �
˛C

ˇ
n z1

z1
divided by

log�. By continuity, we can then define the distance between two arbitrary points
z and z1 to be the logarithm of the quotient z

z1
divided by the constant log�. The

constant 1
log� is denoted henceforth by c.

Klein shows that the measure defined in this way is additive, that the distance from
a point to itself is zero, and that the distance between two points is invariant by any
linear transformation that fixes the fundamental elements z D 0 and z D1. He then
observes that the quotient z

z0 may be interpreted as the cross ratio of the quadruple
0; z; z0;1. Thus, the distance between two points z; z0 is a constant multiple of the
logarithm of the cross-ratio of the quadruple 0; z; z0;1. In particular, the distance
between the two fundamental elements is infinite.

Figures 5.3 and 5.4 reproduce Klein’s constructions of equidistant points in the
cases of hyperbolic and spherical geometry.
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Figure 5.3. The construction of equidistant points on the hyperbolic line, using the invariance of the
cross ratio. The drawing is extracted from [37] (p. 172).

In �4 of his paper, Klein extends the distance function c log z
z0 to pairs of points

on the complex line joining the points 0 and 1, after choosing a determination of
the complex logarithm. He then gives an expression for a general result where he
assumes, instead of the special case where the two fundamental elements are 0 and
1, that these points are the solutions of a second-degree equation


 D az2 C 2bz C c D 0:

For two arbitrary points given in homogeneous coordinates, .x1; x2/ and .y1; y2/,
setting


xx D ax21 C 2bx1x2 C cx22 ;

yy D ay21 C 2by1y2 C cy22

and

xy D ax1y1 C 2b.x1y2 C x2y1/C cx2y2;

the distance between the two points is

c log

xy C

q

2xy �
xx
yy


xy �
q

2xy �
xx
yy

: (5.1)

Later on in Klein’s paper, the same formula, with the appropriate definition for
the variables, defines a measure between angles between lines in a plane and between
planes in three-space.
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Figure 5.4. The construction of equidistant points in the case of spherical geometry. The drawing is
from [37] (p. 171).

In �5, Klein derives further properties of the construction of the measure, distin-
guishing the cases where the two fundamental points are respectively real distinct, or
conjugate imaginary, or coincident.

The first case was already treated; the two fundamental points are infinite dis-
tance apart, and they are both considered at infinity. He observes that this occurs in
hyperbolic geometry, a geometry where any line has two points at infinity.

The case where the two fundamental points are conjugate imaginary occurs in
elliptic geometry where a line has no point at infinity. Klein shows that in this case all
the lines are finite and have a common length, whose value depends on the constant
c that we started with. The distance 5.1 between two points becomes

2ic arccos

p

xyp


xx
yy
: (5.2)

Klein notes that a particular case of this formula appears in Cayley’s paper, who used
only the value � i

2
for c and when, consequently, the term in front of arccos is equal

to 1.
Klein studies the case where the two fundamental points coincide in �6. This case

concerns Euclidean (parabolic) geometry. It is more complicated to handle than the
other cases and it needs a special treatment. One complication arises from the fact
that in this case Equation (5.2), which has a unique solution, leads to distance zero
between the points x and y. The problem is resolved by considering this case as
a limit of the case where the equation has two distinct solutions. Klein derives from
there the formula for the distance on a line in which there is a unique point at infinity,
that is, a unique point which is infinitely far from all the others.
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Figure 5.5. The distance between the two points x and y is computed as the cross ratio of the four
points (figure to the left hand side). The angle between two lines u and v is computed as the cross
ratio of the four lines (figure to the right hand side). The drawing from is from [37] (p. 165).

In �7, Klein introduces a notion of tangency of measures at an element. For this,
he introduces two measures associated to a basic figure of the first kind, which he calls
“general” and “special”, and which he terms as “tangential”. The overall construction
amounts to the definition of infinitesimal geometric data, and it is also used to define
a notion of a curvature of a general measure. The sign and the value of this curvature
depend on some notion of deviation, which he calls “staying behind or running ahead”
of the general measure relative to the special measure. He shows that the value of this
geometrically defined curvature is constant at every point, and equal to 1

4c2 , where c
is the characteristic constant of the general measure. Using Taylor expansions, Klein
shows that the three geometries (elliptic, parabolic and hyperbolic) are tangentially
related to each other, which is a way of saying that infinitesimally, hyperbolic and
spherical geometry are Euclidean. The value of c is either real or imaginary so that
one can get positive or negative curvature.46

In �8, Klein outlines the construction of the measure for basic figures of the second
kind, that is, measures on planes and measures on pencils of dihedral angles between
planes. He uses for this an auxiliary conic. This is the so-called fundamental conic
(the conic that is called the absolute by Cayley). Each projective line intersects this
conic in two points (real, imaginary or coincident). The case where the points are
real is represented in the left hand side in Figure 5.5. The two points play the role of
fundamental points for the determination of the metric on that line, and the problem of
finding a measure is reduced to the 1-dimensional case which was treated before. The
fundamental conic is the locus of points which are infinitely distant from all others.

Measures on rays in the plane are based on the fact that at each point, there are rays
that start at that point and that are tangent to the conic. Again, these rays are solutions
of a certain quadratic equation and they may be distinct real, distinct imaginary or
coincident. The two tangent rays are taken to be the fundamental rays for the angle
determination in the sense that the angle between two arbitrary rays is then taken to
be the cross ratio of the quadruple formed by these rays and the fundamental rays.

46The result should be real, and for that reason, c has sometimes to be taken imaginary. This is to be compared
with the fact that some (real) trigonometric functions can be expressed as functions with imaginary arguments.
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Figure 5.6. The three types of motions of non-Euclidean geometry inside an ellipse. Klein liked
to describe them as “rotations”, with center either in the space, or at the boundary of the space, or
outside the space. In �9 of [33], Klein writes: Each motion of the plane is a rotation about a point.
All other points describe circles with this point as centre (p. 93 of the English translation). The
drawing is from [36] (p. 149).

This is represented in the right hand side of Figure 5.5. The multiplicative constant is
not necessarily the same in the formulae giving the measures on lines and on rays.

Klein then determines an analytic expressions for these measures. It turns out that
the formulae are the same as those obtained in �4. If the equation of the fundamental
conic is
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then the distance between the two points x and y, in homogeneous coordinates
.x1; x2; x3/ and .y1; y2; y3/, is
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where 
xx; 
yy , etc. are the expressions obtained by substituting in 
 the coor-
dinates .x1; x2; x3/ of a point x or .y1; y2; y3/ of a point y, etc. Equivalently, we
have
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That is, one obtains again Formulae (5.1) and (5.2) of �4.
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Concerning measures on angles, the equations have a similar form. One takes the
equation of the fundamental conic in line coordinates to be

ˆu;v D
3X

i;jD1
Aijuivj D 0:

The distance between the two points u and v in homogeneous coordinates .u1; u2; u3/
and .v1; v2; v3/ is then

c0 log
ˆuv C

p
ˆ2uv �ˆuuˆvv

ˆuv �
p
ˆ2uv �ˆuuˆvv

(5.5)

or, equivalently,

2ic0 arccos

p
ˆuvp

ˆuu
vv
: (5.6)

where 
uu; 
vv have the same meaning as before.
The constant c0 is in general different from c. In general, the constants are chosen

so that the result is real.
The measures on points and on lines are defined by similar formulae. This is

a consequence of the fact that they are solutions of second-degree equations, and
that the coefficients of the two equations are related to each other by the duality in
projective geometry. Duality is discussed in the next section.

�9 concerns the properties of the projective transformations of the plane that pre-
serve a conic. Klein points out that there is a “threefold infinity” of such transforma-
tions (in other words, they form a 3-dimensional group), and he starts a classification
of such transformations, based on the fact that each transformation fixes two points of
the conic and reasoning on the line connecting them, on the tangents at these points,
on their point of intersection, and working in the coordinates associated to the triangle
formed by the connecting line and the two tangents. The classification involves the
distinction between real conics with real points and real conics without real points.
The aim of the analysis is to prove that the transformations that map the conic into
itself preserve the metric relations between points and between angles. There is also
a polar duality determined by the conic. With this duality, a quadruple formed by
two points and the intersection of the line that joins them with the conic corresponds
to a quadruple formed by two lines and tangents to the conic that pass through the
same point. This correspondence preserves cross ratios. The duality is such that the
distance between two points is equal to the angle between the dual lines. This is
a generalization of the polar duality that occurs in spherical geometry.

After the discussion of projective measures between points in �9, Klein consid-
ers in �10 measures for angles in pencils of lines and of planes. In this setting, he
uses a fundamental cone of second degree instead of the fundamental conic. He
also appeals to polarity theory and he makes a relation with the measure obtained
in the previous section. The result brought out at the end of the previous section is
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interpreted here as saying that the angle between two planes is the same as the an-
gle between their normals, and this has again an interpretation in terms of spherical
geometry duality.

In �11, Klein develops a model for spherical geometry that arises from his mea-
sures associated to conics.

When the fundamental conic is imaginary, setting c D c1
p�1 and c0 D c0

1

p�1,
the measures for lines and for angles are found to be respectively

2c1 arccos
xx0 C yy 0 C zz0p

x2 C y2 C z2px02 C y 02 C z02 (5.7)

and

2c0
1 arccos

uu0 C vv0 Cww0
p
u2 C v2 Cw2pu02 C v02 Cw02 ; (5.8)

which are the familiar formulae for angle measure on a sphere. In particular, the
distance between any two points is bounded, as expected. In fact, all lines are closed,
they have finite length, and these lengths have a common value, 2c1� , which is (up to
a constant multiple) the angle sum of a pencil, which is 2c0

1� . The point measure is
completely similar to the angle measure. This again can be explained by the duality
between points and lines in spherical geometry. Klein concludes from this fact that
“plane trigonometry, under this measure, is the same as spherical trigonometry” and
that “the plane measure just described is precisely that for elliptic geometry.” By
choosing appropriately the constants c1 and c0

1, the angle sum of any pencil becomes
� and the maximal measure between points becomes also � . Klein also deduces that
in that geometry, the angle sum of a plane triangle is greater than � , as for spherical
triangles, and only equal to � for infinitesimally small triangles.

In �12, Klein describes the construction that leads to hyperbolic geometry. This
is the case where the absolute is a real fundamental conic in the plane. In this case,
the constant c that appears in the general formula 5.1 for distances is taken to be real.
The points in the plane are divided into three classes: the points inside the conic, the
points on the conic and the points outside the conic. The points inside the conic are
those that admit no real tangent line to the conic. The points on the conic are those
that admit one real tangent line. The points outside the conic are those that admit two
real tangent lines.

Likewise, the lines in the plane are divided into three classes: the lines that meet
the conic in two real points, those that meet the conic in a unique (double) real point
and those that do not meet the conic in any real point. Klein claims that this case
corresponds to hyperbolic geometry. To support this claim, he writes:

The geometry based on this measure corresponds completely with the idea of hyper-
bolic geometry, when we set the so far undetermined contant c0

1 equal to 1
2 , making

the angle sum of a line pencil equal to � . In order to be convinced of this, we
consider a few propositions of hyperbolic geometry in somewhat more detail.
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The propositions that Klein considers are the following:

1. Through a point in the plane there are two parallels to a given line, i.e. lines
meeting the points at infinity of the given line.

2. The angle between the two parallels to a given line through a given point de-
creases with the distance of the point from the line, and as the point tends to
infinity, this angle tends to 0, i.e. the angle between the two parallels tends to
zero.

3. The angle sum of a triangle is less than � . For a triangle with vertices at
infinity, the angle sum is zero.

4. Two perpendiculars to the same line do not meet.

5. A circle of infinite radius is not a line.

Klein notes that these properties are satisfied by his geometry. This is not a full
proof of the fact that the geometry defined using the distance function he described
is hyperbolic geometry, but it is a strong indication of this fact. In fact, it is surely
possible, but very tedious, to show that all the axioms of hyperbolic geometry are
satisfied by his geometry. Klein then adds (Stillwell’s translation p. 99):

Finally, the trigonometric formulae for the present measure are obtained immedi-
ately from the following considerations. In �11 we have seen that, on the basis of an

imaginary conic in the plane and the choice of constants c D c1i , c0 D c0
1i D

p�1
2 ,

the trigonometry of the plane has the same formulae as spherical trigonometry when
one replaces the sides by sides divided by 2c1. The same still holds on the basis of
a real conic. Because the validity of the formulae of spherical trigonometry rests on
analytic identities that are independent of the nature of the fundamental conic. The
only difference from the earlier case is that c1 D c

i is now imaginary.
The trigonometric formulae that hold for our measure result from the formulae

of spherical trigonometry by replacing sides by sides divided by c
i

.
But this is the same rule one has for the trigonometric formulae of hyperbolic

geometry. The constant c is the characteristic constant of hyperbolic geometry. One
can say that planimetry, under the assumption of hyperbolic geometry, is the same
as geometry of a sphere with the imaginary radius ci .

The preceding immediately gives a model of hyperbolic geometry, in which we
take an arbitrary real conic and construct a projective measure on it. Conversely, if
the measure given to us is representative of hyperbolic geometry, then the infinitely
distant points of the plane form a real conic enclosing us, and the hyperbolic geom-
etry is none other than the projective measure based on this conic.

�13 concerns parabolic geometry. In this case, the fundamental figure at infinity
is a degenerate conic. It is reduced to a pair of points, and, in Klein’s words, it consti-
tutes a “bridge between a real and an imaginary conic section.” The metric obtained
is that of Euclidean geometry and the line joining the pair of points at infinity (the
degenerate conic) is the familiar line at infinity of projective geometry. In this sense,
parabolic geometry is regarded as a transitional geometry, sitting between hyperbolic
and elliptic geometry. To understand how this occurs, Klein gives the example of
a degeneration of a hyperbola. A hyperbola has a major and a minor axis, which are
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Figure 5.7. The conic at infinity, or the “absolute”, in the case of a real conic. The drawing is from
[36].

symmetry axes, the major axis being the segment joining the two vertices a and �a
(and the length of this axis is therefore equal to 2a) and the minor axis being perpen-
dicular to the major one, with vertices at points b and �b, of length 2b. The major
and minor axes are also the two perpendicular bisectors of the sides of a rectangle
whose vertices are on the asymptotes of the hyperbola. In a coordinate system where
the two axes are taken as the major and major axes, the equation of the hyperbola is
x2

a2 � y2

b2 D 1. The minor axis is also called the imaginary axis because of the minus
sign occurring in this equation.

The degeneration of the hyperbola into two imaginary points is obtained by keep-
ing fixed the imaginary axis and shrinking to zero the major axis. Meanwhile, the two
branches of the hyperbola collapse to the line carried by the minor axis, covering it
twice. This line represents a degenerate conic, and in fact, as Klein points out, insofar
as it is enveloped by lines, it is represented by the two conjugate imaginary points.
The associated measure on the plane is called a special measure, because it uses a pair
of points instead of a fundamental conic. Klein obtains an analytic formula that gives
the associated distance between points. Starting with the general expression

2ic arcsin

q

2xy �
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yy
;
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where
 D 0 is the equation of the conic and
xx ,
xy and
yy are as he defined in
�4, and taking limits when the conic degenerates to a pair of points, he deduces that
the distance between two points .x; y/ and .x0; y 0/ is

C

k2

p
.x � x0/2 C .y � y 0/2

which up to a constant factor is the Euclidean distance in coordinates. He concludes
this section with the following:

We want to stress that with imaginary fundamental points the trigonometric formulae
become the relevant formulae of parabolic geometry, so the angle sum of a triangle is
exactly � , whereas with a real fundamental conic it is smaller, and with an imaginary
conic it is larger.

In �14, Klein considers again the notion of a “measure on a plane which is tan-
gent to a general measure at a point”, that is, he considers infinitesimal distances.
This leads him again to the definition of a notion of curvature which is equivalent to
Gaussian curvature. Klein then uses a duality, where the dual of a point of the given
geometry is a “line at infinity” which is the polar dual of the given point with respect
to the fundamental conic. He obtains a qualitative definition of curvature which turns
out to be equivalent to the Gaussian curvature. This leads to the conclusion that the
curvature of a general measure is the same at all points and is equal to �1

4c2 , that it
is positive if the fundamental conic is imaginary (the case of elliptic geometry) and
negative if the fundamental conic is real (the case of hyperbolic geometry). In the
transitional case (parabolic geometry), which is a limiting case in which the funda-
mental conic degenerates into a pair of imaginary points, the curvature is zero. Klein
concludes this section with the following statement:

According to whether we adopt the hypothesis of an elliptic, hyperbolic or para-
bolic geometry, the plane is a surface with constant positive, constant negative or
zero curvature.

In �15, Klein talks about a continuous transition from hyperbolic to parabolic and
from spherical to parabolic. Let us quote him (Stillwell’s translation p. 107):

If we are actually given parabolic geometry we can immediately constructs a geom-
etry which models hyperbolic geometry by constructing a general measure with real
fundamental conic, tangential to the given special measure at a point of our choice.
We achieve this by describing a circle of radius 2c centred on our point, and using
it as the basis for a projective measure with the constant c determining the distance

between two points and the constant c0 D
p�1
2 determining the angles between two

lines. This general measure approaches the given parabolic measure more closely as
c becomes larger, coinciding with it completely when c becomes infinite.

In a similar way we construct a geometry that shows how elliptic geometry can
tend toward the parabolic. To do this it suffices to give a pure imaginary value c1i
to the c we used previously. Then we fix a point at distance 2c1 above the given
point of contact and take the distance between two points of the plane to be c1 times
the angle the two points subtend at the fixed point. The angle between the two lines
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in the plane is just the angle they subtend at the fixed point. The resulting measure
approaches more closely to the parabolic measure the greater c1 is, and it becomes
equal to it when c1 is infinite.

When elliptic or hyperbolic geometry is actually the given geometry one can
in this way make a model presenting its relationship with parabolic or the other
geometry.

�16 concerns projective measures in space. The same procedure as before is
used, with a second-degree fundamental surface in 3-space instead of the fundamen-
tal curve in the plane. The case where the fundamental surface is imaginary leads
to elliptic geometry. The case where it is real and not ruled, leads to hyperbolic ge-
ometry. The case where the fundamental surface degenerates to a conic section leads
to parabolic geometry, and this conic section becomes the imaginary circle at infin-
ity. The case where the fundamental surface is real and ruled, that is, a one-sheeted
hyperboloid, is not related to any of the classical geometries, it leads to a geometry
which is not locally Euclidean but pseudo-Euclidean.

The title of �17 is “The independence of projective geometry from the theory of
parallels.” Klein observes that projective geometry insofar as it uses the notions of
homogeneous coordinates and the cross ratio, is defined in the setting of parabolic
geometry. He notes however that in the same way as one can construct projective
geometry starting with parabolic geometry, one can construct it also on the basis
of hyperbolic and elliptic geometry. He then notes that projective geometry can be
developed without the use of any measure, using the so-called incidence relations,
referring to the work of von Staudt.

In the conclusion to the paper (�18), Klein notes that by a consideration of the
sphere tangent to the fundamental surface, one is led to only the three geometries
considered, elliptic, hyperbolic and the transitional one, that is, the parabolic.

8 Klein’s second paper

The second paper ([35] same title, Part II), appeared two years after the first one.
It has a more general character, it is in the spirit of his Erlangen program, and it is
less technical than the first paper. There does not seem to be an available English
translation of that paper. In this paper, Klein gives some more details on results he
obtained in the first paper. Let us quote Klein from his Göttingen lecture notes of
Klein [36] (p. 286–287; Goenner’s translation):

When the accord of Cayley’s measure geometry and non-Euclidean geometry was
stated *, it became essential to draw conclusions from it. On these conclusions I
wish to attach most importance, although they were developed more in detail only
in the second paper, when I noticed that the very same [conclusions] did appear to
other mathematicians not as self-evident as for myself. [. . . ] (footnote) * Beltrami
and Fiedler also had noticed this accord, as they later wrote to me.
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We now give a brief summary of the content of the paper [35].
This paper has two parts. In the first part, Klein develops the idea of a transfor-

mation group that characterizes a geometry. In the second part, he develops an idea
concerning projective geometry which he had also mentioned in the first paper [33],
namely, that projective geometry is independent from the Euclidean parallel postulate
(and from Euclidean geometry).47 Klein insisted on this fact, because, as he wrote,
some mathematicians thought that there was a vicious circle in his construction of
Euclidean geometry from projective geometry, considering that the definition of the
cross ratio uses Euclidean geometry, since it involves a compounded ratio between
four Euclidean segments. Some also thought that there was a contradiction in Klein’s
reasoning, since in spherical and hyperbolic geometry Euclid’s parallel axiom is not
satisfied, so a formula for the metric defining these geometries cannot be based on
the distance function of Euclidean geometry where the parallel axiom is satisfied. In
fact, as was already recalled above, in his Geometrie der Lage [56], von Staudt had
already worked out a purely projective notion of the cross ratio, independent of any
notion of distance.48 In his Lectures on the development of mathematics in the XIXth
century (1926–1927), [40] Klein returns to the history and he writes the following
(Vol. 1, p. 153):

More important is the objection I received from mathematicians. In my paper written
in Volume IV of the Annalen, I did not expect the logical difficulties that the problem
raised, and I had started an innocent use of metric geometry. It is only at the end
that I mentioned in a very brief way the independence of projective geometry from
any metric, referring to von Staudt. I was accused from everywhere of making
circular reasoning. The purely projective definition of von Staudt of the cross ratio
as a number was not understood, and people stood firmly on the idea that this number
was only given as a cross ratio of four Euclidean numbers.

We also quote Cayley’s citation of R. S. Ball [13] (Vol. II, p. 605):

I may refer also to the memoir, Sir R. S. Ball “On the theory of content,” Trans.
R. Irish Acad. vol. XXIX (1889), pp. 123–182, where the same difficulty is dis-
cussed. The opening sentences are – “In that theory [Non-Euclidian geometry] it
seems as if we try to replace our ordinary notion of distance between two points by
the logarithm of a certain anharmonic ratio. But this ratio itself involves the notion
of distance measured in the ordinary way. How then can we supersede the old notion

47One of the basic features of projective geometry is that in the arguments that involves lines, unlike in
Euclidean geometry, one does not have to distinguish between the cases where the lines intersect or are parallel.
In projective geometry, any two distinct points define one line, and any two distinct lines intersect in one point.
We already mentioned that this principle is at the basis of duality theory in projective geometry.

48We can quote here Klein from his Erlangen program [34]: “We might here make mention further of the
way in which von Staudt in his Geometrie der Lage (Nürnberg, 1847) develops projective geometry, – i.e., that
projective geometry which is based on the group containing all the real projective and dualistic transformations.”
And in a note, he adds: “The extended horizon, which includes imaginary transformations, was first used by von
Staudt as the basis of his investigation in his later work, Beiträge zur Geometrie der Lage (Nürnberg, 1856–60).”
For the work of von Staudt and in his influence of Klein, and for short summaries of the Geometrie der Lage
and the Beiträge zur Geometrie der Lage, we refer the reader to the paper [27] in this volume.
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of distance by the non-Euclidian notion, inasmuch as the very definition of the latter
involves the former?”

From this, let us conclude two different things:

1. There was a great deal of confusion about Klein’s ideas, even among the most
brilliant mathematicians.

2. The mathematicians were not only interested in formulae, but they were dig-
ging in the profound meaning that these formulae express.

We end this paper with a brief summary of the content of [35], since no available
translation exists. The reader can compare the content of this paper with the summary
of the Erlangen program lecture given in Chapter 1 of this volume [27].

The introduction contains historical recollections on the works of Cayley and von
Staudt which, according to Klein, did not have yet any applications. Klein then recalls
that the “problem of parallels”, that is, the problem of deciding whether Euclid’s par-
allel axiom follows or not from the other axioms of Euclidean geometry was settled.
He mentions the works of the founders of modern geometry, and he says that each
of them brought new mathematical concepts, in particular, new examples of spaces
of constant curvature. At the same time, several open questions remain to be solved,
and other things need to be made more precise. Klein then mentions the spaces of
variable curvature constructed by Riemann. All these works contribute to new points
of view on spaces and on mechanics. He also recalls that there is a difference between
the metrical and the projective points of view, and he declares that the geometries of
constant curvature should be simpler to study.

In Section 1 of the first part of the paper, Klein considers the concept of higher
dimensions. He mentions the relation between constant curvature manifolds and pro-
jective manifolds.49 Analytic geometry allows the passage to higher dimensions,
working in analogy with the low dimensions that we can visualize. He points out
that on a given line, we can consider either the real points or all points. He then
recalls the definition of the cross ratio.

Section 2 concerns transformations. Klein explains the notion of composition
of transformations, and he considers in particular the case of collineations, forming
a group. He then presents the idea of group isomorphism. The reader should recall
that these ideas were relatively new at that time.

Section 3 concerns “invariant”, or “geometric”, properties. A property is geomet-
ric if it is independent of the location in space. A figure should be indistinguishable
from its symmetric images. The properties that we seek are those that remain invari-
ant by the transformations of the geometry.

In Section 4, Klein develops the idea that the methods of a given geometry are
characterized by the corresponding groups. This is again one of the major ideas that
he expresses in his Erlangen program. He elaborates on the significance of projective

49In [34], the term “Mannigfaltigkeiten”, which for simplicity we translate by “manifold”, is usually translated
by “manifoldness”. See the comments in [27] in this volume on the meaning of the word manifoldness. We
recall that the notion of manifold as we intended today, defined by coordinate charts, was given much later.
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geometry, and in particular on the transformations that leave invariant the imaginary
circle at infinity. The methods depend on the chosen transformation group.

The discussion is also confirmed by Klein in his lecture notes of 1898/90 ([36],
p. 120; Goenner’s translation):

In contradistinction [to Helmholtz], I had the generic thought that, in studying man-
ifolds under the viewpoint of giving them a geometric character, one can put ahead
any transformation group [. . . ].* Above all it is advisable to chose the collineations
(linear transformations) as such a group. [. . . ] This then is the specially so-called
invariant theory. – (footnote) * Ann. VI, p. 116 et seq., as well as notably the
Erlangen program.

Section 5 concerns generalizations to higher-dimensional spaces. The simplest
transformation groups are the groups of linear transformations. They give rise to
projective geometry. Although there is no distance involved, this is considered as
a geometry. Klein introduces the word “invariant theory”, where we have no distance
involved, but we look for invariant objects. Modern algebra is helpful in that study.
In the case where we have a metric, we have an invariant quadratic form. He declares
that he will study the case where there is none. He introduces a notion of differential
of a map. At the infinitesimal level, the differential behaves like a linear map.

In Section 6, Klein considers spaces of constant nonzero curvature. He refers to
Beltrami, who showed that in such a space we can define geodesics by equations that
are linear in the appropriate coordinates. He raises the question of understanding the
transformations of a manifold of constant curvature in the projective world, and this
is done in linearizing them. Indeed, by choosing adequate coordinates, the group of
transformations that we attach to a manifold of constant curvature is contained in the
group of linear transformations. (“The transformation group of a constant curvature
geometry is reducible to a transformation group which preserves a quadratic form.”)
Klein says however that there is a difference between his viewpoint and the one of
Beltrami, namely, Klein starts with complex variables and then he restricts to real
variables. This gives a uniform approach to several things.

Elliptic space is obtained from the sphere by identifying antipodal points so that
there is a unique geodesic connecting two points. In higher dimensions similar objects
exist.

Sections 7 and 8 concern the description of constant curvature manifolds in terms
of projective notions, and Klein recalls the definition of the distance using the cross
ratio.

In Section 9, Klein defines a point at infinity of the space as a representative of
a class of geodesic lines.

The subject of the second part of the paper is the fact that, following von Staudt,
one can construct projective space independently of the parallel axiom.

In the first section of this part, Klein explains various constructions that are at the
basis of projective geometry. He also introduces the betweenness relation. He talks
about lines and pencils of planes, of the cross ratio and of the notion of harmonic divi-
sion, and he states the fact that there is a characterization of 2-dimensional projective
geometry. He recalls that von Staudt, in his work, used the parallel axiom, but that
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without essential changes one can recover the bases of projective geometry without
the parallel axiom. He then studies the behavior of lines and planes, and the notion of
asymptotic geodesics. This section also contains a detailed discussion of von Staudt’s
axiomatic approach.

Section 2 concerns the “formulation of a proposition which belongs to the general
theory of Analysis situs.” Klein explains how one can attach coordinates to points.

In Section 3, he returns to the bases of systems of planes and their intersection.
In Section 4, he elaborates on the notion of harmonic element, and on the notion

of betweenness among points.
In Section 5, Klein expands on the work of van Staudt on projective transforma-

tions.
In Section 6, he talks about pencils of planes and about duality and ideal points;

a point at infinity defines as a class of lines which do not intersect.
Section 7 concerns the cross ratio and homogeneous coordinates.
In Section 8, Klein gives an analytical proof of the main theorem of projective ge-

ometry. He says that there is a characterization of 2-dimensional projective geometry.
To conclude this section, let us insist on the fact that beyond their immediate goal

(which is an important one), the two papers by Klein are full of interesting historical
comments and references to works of other mathematicians. They are the expression
of the elegant style and the great erudition which characterizes Klein’s writings in
general. The reader should remember that in 1871, at the time he wrote the paper
[33], Klein was only 22 years old.

Let us note as a conclusion that Klein, in this work and is later works, was one of
the earliest promoters of hyperbolic geometry, and that he used it extensively in his
later work, notably, in the subject which Poincaré called later on Kleinian groups, that
is, discrete groups of fractional linear transformations acting on hyperbolic space.

9 Poincaré

In his paper [50] (1887), Poincaré describes a construction of a set of geometries,
using quadrics in three-space. The theory of associating a geometry to a quadric
is of course related to the theory developed by Klein, although the point of view is
different. Whereas in Klein’s (and Cayley’s) construction, the quadric is at infinity,
the geometry, in the case developed by Poincaré, lives on the quadric.

Let us recall that a quadric, also called (by Poincaré) a quadratic surface, (“sur-
face quadratique”) is a surface in Euclidean three-space which is the zero locus of
a degree-two polynomial equation in three variables. There is a projective characteri-
zation of quadrics, which is coordinate-free: a quadric is a surface in projective space
whose plane sections are all conics (real or imaginary). It follows from this definition
that the intersection of any line with a quadric consists of two points, which may be
real or imaginary, unless the line belongs to the quadric. Furthermore, the set of all
tangents to a quadric from an arbitray point in space is a cone which cuts every plane
in a conic, and the set of contact points of this cone with the quadric is also a conic.
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There are well-known classification of quadrics; some of them use coordinates
and others are coordinate-free. Chapter 1 of the beautiful book of Hilbert and Cohn-
Vossen, Geometry and the imagination [30], concerns quadrics. The equation of
a conic can be put into normal form. Like for conics (which are the one-dimensional
analogues of quadrics), there are some nondegenerate cases, and some degenerate
cases. Poincaré obtained the two non-Euclidean geometries as geometries living on
non-degenerate quadrics, and Euclidean geometry as a geometry living on a degener-
ate one. This is very close to the ideas of Klein.

There are nine types of quadrics. Six of them are ruled surfaces (each point is on
at least one straight line contained in the surface); these are the cone, the one-sheeted
hyperboloid, the hyperbolic paraboloid and the three kind of cylinders (the elliptic,
parabolic and hyperbolic). The three non-ruled quadrics are the ellipsoid, the elliptic
paraboloid and the two-sheeted hyperboloid. These three surfaces do not contain any
line.

The one-sheeted hyperboloid and the hyperbolic paraboloid are, like the plane,
doubly ruled, that is, each point is on at least two straight lines.

Three types of nondegenerate quadrics which possess a center: the ellipsoid, the
two-sheeted hyperboloid and the one-sheeted hyperboloid.

Poincaré starts with a quadric in R
3, called the fundamental surface. On such

a surface, he defines the notions of line, of angle between two lines and of length of
a segment.

Given a quadric, the locus of midpoints of the system of chords that have a fixed
direction is a plane, called a diametral plane of the quadric. In the case where the
quadric has a center, a diametral plane is a plane passing through the center.

Like in the case of the sphere, with its great circles and its small circles, Poincaré
calls a line an intersection of a quadric surface with a diametral plane, and a circle an
intersection of a quadric with an arbitrary plane.

Angles are then defined using the cross ratio. Given two lines l1 and l2 passing
through a point P , Poincaré considers the quadruple of Euclidean lines formed by
the tangents to l1 and l2 and the two rectilinear generatrices of the surface that pass
through the point P . There are two generatrices at every point of the surface, and
they may be real or imaginary. Poincaré defines the angle between l1 and l2 as the
logarithm of the cross ratio of the four Euclidean lines (l1, l2 and the two generatri-
ces) in the case where the two generatrices are real (and this occurs of the surface is
a one-sheeted hyperboloid), and this logarithm divided by

p�1 in the case where the
generatrices are imaginary.

Now given an arc of a line of the quadric, consider the cross ratio of the quadruple
formed by the two extremities of this arc and the two points at infinity of the conic.
The length of this arc is the logarithm of the cross ratio of this quadruple of points in
the case where the conic is a hyperbola, and the logarithm of this cross ratio divided
by
p�1 otherwise.
Poincaré then says that there are relations between lengths and distances defined

in this way, and that such relations constitute a set of theorems which are analogous
to those of plane geometry. He calls the collection of theorems associated to a given
quadric a quadratic geometry. There are as many quadratic geometries as there are
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kinds of second degree surfaces, and Poincaré goes on with a classification of such
geometries.

In the case where the fundamental surface is an ellipsoid, the geometry obtained
is spherical geometry.

In the case where the fundamental surface is a two-sheeted hyperboloid, the ge-
ometry obtained is the Lobachevsky (or hyperbolic) geometry.

In the case where the fundamental surface is an elliptic paraboloid, the geometry
obtained is the Euclidean and Poincaré says that this geometry is a limiting geometry
of each of the previous two.

There are other geometries, e.g. the one-sheeted hyperboloid and its various de-
generate cases. Some of the degenerate geometries give the Euclidean geometry. But
the one-sheeted hyperboloid itself gives a geometry which Poincaré highlights, as
being a geometry which was not been studied yet, and in which the following three
phenomena occur:

1. The distance between two points on the fundamental surface which are on
a common rectilinear generatrix is zero.

2. There are two sorts of lines: lines of the first kind, which correspond to the
elliptic diametral sections, and lines of the second kind, which correspond to
the hyperbolic diametral sections. It is not possible, by a real motion, to bing
a line of the first kind onto a line of the second kind.

3. There is no nontrivial real symmetry which sends a line onto itself. (Such
a symmetry is possible in Euclidean geometry; it is obtained by a 180o rotation
centered at a point on the line.)

This geometry is in fact the one called today the planar de Sitter geometry.
Poincaré, in this paper, does not mention Klein, but he thoroughly mentions Lie,

and he considers this work as a consequence of Lie’s work on groups. In the second
part of the paper, titled “Applications of group theory”, Poincaré gives a character-
ization of the transformation group of each of these geometries. This is done in
coordinates, at the infinitesimal level, in the tradition of Lie. He considers (p. 215)
that “geometry is nothing else than the study of a group”, and this brings us again to
Klein’s Erlangen program.

10 Conclusion

Our aim in this chapter was to present to the reader of this book an important piece
of work of Felix Klein. We also tried to convey the idea that mathematical ideas may
occur at several people at the same time, when time is ready for that. Each of us has
a special way of thinking, and it often happens that works on the same problem, if
they are not collective, complement each other. We also hope that this chapter will
motivate the reader to go through the original sources.
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Let us conclude with the following two problems.

1. We already noted that Klein, in his development of the three geometries in his
papers [33] and [35], considers Euclidean geometry as a transitional geometry.
In this way, Euclidean geometry corresponds to a limiting case of the absolute,
in which the fundamental conic degenerates to a pair of imaginary points. We
developed the notion of transitional geometry in the paper [1], in a way dif-
ferent from Klein’s, and we studied in which manner the fundamental notions
of geometry (points, lines, distances, angles, etc.) as well as the trigonometric
formulae transit from one geometry to another. An interesting problem is to
make the same detailed study of transition of these fundamental notions in the
context of Klein’s description of the geometries.

2. Hilbert developed a generalization of the Klein model of hyperbolic geometry
where the underlying set is the interior of an ellipsoid to a geometry (called
Hilbert geometry) where the underlying set is an arbitrary open convex set in
Rn. The distance between two points x and y in Hilbert’s generalization is
again the logarithm of the cross ratio of the quadruple consisting of x and y
and the two intersection points of the Euclidean line that joins these points
with the boundary of the ellipsoid, taken in the natural order. We propose, as
a problem, to develop generalizations of the two other geometries defined in
the way Klein did it, that are analogous in some way to the generalization of
hyperbolic geometry by Hilbert geometry.
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[49] J.-V. Poncelet, Traité des propriétés projectives des figures : ouvrage utile à ceux qui
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marion, 1902.

[52] R. Rashed and A. Papadopoulos, On Menelaus’ Spherics III.5 in Arabic mathematics. I: Ibn
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This is neither a research nor a review but some reflections about the general theory
of (nonlinear) partial differential equations (N)PDEs and its strange marginal status
in the realm of modern mathematical sciences.

Since a long time a “zoological-botanical” approach dominates the study of PDEs,
and, especially, of NPDEs. Namely, single equations coming from geometry, physics,
mechanics, etc. were “tamed and cultivated” like single animals/plants of a practi-
cal or theoretical interest. As a rule, for each of these equations were found some
prescriptions for the treatment motivated by some concrete external, i.e., physical,
etc. reasons, but not based on the knowledge of their intrinsic mathematical nature.
Mainly, these prescriptions are focused on how to construct the solutions rather than
to answer numerous questions concerning global properties of the PDE itself.

Modern genetics explains what are living things, their variety and how to treat
them to get the desired result. Obviously, a similar theory is indispensable for PDEs,
i.e., a solid, well established general theory. The recent spectacular progress in genet-
ics became possible only on the basis of not less spectacular developments in chem-
istry and physics in the last century. Similarly, the general state of the art in mathe-
matics 50–60 years ago was not sufficiently mature to think about the general theory
of PDEs. For instance, the fact that an advanced homological algebra will become an
inherent feature of this theory could have been hard to imagine at that time.

Recent developments in the general theory of PDEs are revealing more and more
its intimate relations with quantum mechanics, quantum field theory and related areas
of contemporary theoretical physics, which, also, could be hardly expected a priori.
Even more, now we can be certain that the difficulties and shortcomings of current
physical theories are largely due to this historically explainable ignorance.

In this survey, we informally present in a historical perspective problems, ideas
and results that had led to the renaissance of a general theory of PDEs after the long
dead season that followed the pioneering S. Lie opera. Our guide was a modern
interpretation of the Erlangen program in the form of the principle : look for the
symmetries and you will find the right way. Also, one of our goals was to show that
this theory is not less noble part of pure mathematics than algebraic geometry, which
may be viewed as its zero-dimensional subcase. The paradox is that the number of
mathematicians who worked on this theory does not exceed the number of those who
studied Kummer surfaces.
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Warnings. The modern general theory of PDEs is written in a new, not commonly
known mathematical language, which was formed in the past 30–40 years and was
used by a very narrow circle of experts in this field. This makes it impossible to
present this theory to a wide mathematical audience, to which this survey is ad-
dressed, in its native language. This is why the author was forced to be some-
times rather generic and to refer to some “common places” instead. His apology
is in a maxim attributed to Confucius: “An ordinary man wonders marvelous things,
a wise man wonders common places.”

Notation. Throughout the paper we use ƒk.M/ (resp., Dk.M/) for the C1.M/-
module of k-th order differential forms (resp., k-vector fields) on a smooth manifold
M . For the rest the notation is standard.

1 A brief history of
nonlinear partial differential equations

Sophus Lie was the pioneer who sought for an order in the primordial chaos reigning
in the world of NPDEs at the end of the nineteenth century. The driving force of
his approach was the idea to use symmetry considerations in the context of PDEs in
the same manner as they were used by E. Galois in the context of algebraic equa-
tions. In the initial phase of realization of this program, Lie was guided by the
principle “chercher la symétrie” and he discovered that behind numerous particular
tricks found by hand in order to solve various concrete differential equations there are
groups of transformations preserving these equations, i.e., their symmetries. Then,
based on these “experimental data”, he developed the machinery of transformation
groups, which allows one to systematically compute what is now called point or clas-
sical symmetries of differential equations. Central in Lie theory is the concept of
an infinitesimal transformation and hence of an infinitesimal symmetry. Infinitesimal
symmetries of a differential equation or, more generally, of an object in differential
geometry, form a Lie algebra. This Lie’s invention is among the most important in
the history of mathematics.

The computation of classical symmetries of a system of differential equations
leads to another nonlinear system, which is much more complicate than the original
one. Lie resolved this seemingly insuperable difficulty by passing to infinitesimal
symmetries. In order to find them one has to solve an overdetermined system of linear
differential equations, which is a much easier task and it non infrequently allows
a complete solution. Moreover, by exponentiating infinitesimal symmetries one can
find almost all finite symmetries. A particular case of this mechanism is the famous
relation between Lie algebras and Lie groups.

Initial expectations that groups of classical symmetries are analogues of Galois
group for PDEs had led to a deep delusion. Indeed, computations show that this
group for a generic PDE is trivial. This was one of the reasons why the systematic
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applications of Lie theory to differential equations was frozen for a long time and the
original intimate relations of this theory with differential equations were lost. Only
much later, in the period 1960–1970, L. V. Ovsiannikov and his collaborators resumed
these relations (see [43, 20]) and now they are extending in various directions.

Contact geometry was another important contribution of S. Lie to the general
theory of NPDEs. Namely, he discovered that symmetries of a first order NPDE
imposed on one unknown function are contact transformations. These transforma-
tions not only mix dependent and independent variables but their derivatives as well.
For this reason they are much more general than the above-mentioned point transfor-
mations, which mix only dependent and independent variables. Moreover, it turned
out that contact symmetries are sufficient to build a complete theory for this class
of equations, which includes an elegant geometrical method of construction of their
solutions. In this sense contact symmetries play the role of a Galois group for this
class of equations. On the other hand, the success of contact geometry in the theory
of first order NPDEs led to the suspicion that classical symmetries form just a small
part of all true symmetries of NPDEs. But the question of what are these symmetries
remained unanswered for a long time up to the discovery of integrable systems (see
below). But some signs of an implicit use of such symmetries in concrete situations
can already be found in works of A. V. Bäcklund and E. Noether.

A courageous attempt to build a general theory of PDEs was undertaken by Charles
Riquier at the very end of the 19th century. “Courageous” because at that time the
only way to deal with general PDEs was to manipulate their coordinate descriptions.
His results were then gathered in a handsome book [46] of more than 600 pages pre-
senting, from the modern point of view, the first systematically developed general
theory of formal integrability. This book is full of cumbersome computations, and
the results obtained are mostly of a descriptive nature and do not reveal structural
units of the theory. Nevertheless, it demonstrated that a general theory of PDEs, even
at a formal level, is not impossible. Moreover, Riquier showed that the formal theory
duly combined with the Cauchy–Kowalewski theorem lead to various existence re-
sults in the class of analytic functions such as the famous Cartan–Kähler theorem (see
[7, 24]). In its turn Riquier’s work motivated Élie Cartan to look for a coordinate-free
language for the formal/analytical theory and it led him to the theory of differential
systems based on the calculus of differential forms (see [7]). Cartan’s theory was later
developed and extended by E. Kähler [24], P. K. Rashevsky [45], M. Kuranishi [32]
and others. The reader will find its latest version in [6].

In the middle of the twentieth century the theory of differential systems circulated
in a narrow group of geometers as the most general theory of PDEs. However, this
was an exaggeration. For instance, there were no relations between this theory and
the theory of linear PDEs, which was in a booming growth at that time. Moreover,
this theory did not produce any, worth to be mentioned, application to the study of
concrete PDEs. We can say that it is even hardly possible to imagine that the study of
the Einstein or Navier–Stokes equations will become easier after being converted into
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differential systems. Therefore, the apparatus of differential forms did not confirm the
expectations to become a natural base language for the general theory of PDEs, but
it became one of the basic instruments in modern differential geometry and in many
areas of its applications.

The original Riquier approach was improved and developed by M. Janet ([23]).
But, unfortunately, his works were for a long period shadowed by the works of É. Car-
tan. Their vitality was confirmed much later at the beginning of the new era for
NPDEs (see [44]). This era implicitly starts with the concept of a jet bundle launched
by Ch. Ehresmann (see [12]). Ehresmann himself did not develop applications of
jet bundles to PDEs. But, fortunately, this term became a matter of fashion and
later was successfully used in various areas of differential geometry. In particular,
D. C. Spencer and H. Goldschmidt essentially used jet bundles in their new theory
of formal integrability by inventing a new powerful instrument, namely, the Spencer
cohomology (see [50, 44]). In this way were discovered the first structural blocks
of the general theory of PDEs, and this new theory demonstrated some important
advantages in comparison with the theory of differential systems.

The Ehresmann concept of jet bundle is, however, too restrictive to be applied to
general NPDEs and for this reason should be extended to that of jet space of sub-
manifolds. Namely, the k-th order jet bundle J k.�/ associated with a smooth bundle
� W E ! M consists of k-th order jets of sections of � , while the k-th order jet space
J k.E; n/ consists of k-th order jets of n-dimensional submanifolds of the manifold
E. Jet spaces are naturally supplied with a structure, called the Cartan distribution,
which allows an interpretation of functions defined on them as nonlinear differential
operators. Differential equations in the standard but coordinate independent meaning
of this term are naturally interpreted as submanifolds of jet spaces. The first system-
atic study of geometry of jet spaces was done by A. M. Vinogradov and participants
of his Moscow seminar in the 1970s (see [60, 70, 30]). Later, on this basis, it was
understood that various natural differential operators and constructions that are nec-
essary for the study of a system of PDEs of order k do not live necessarily on the k-th
order jet space but involve jet spaces of any order. This is equivalent to saying that
a conceptually complete theory of PDEs is possible only on infinite order jet spaces.
A logical consequence of this fact is that objects of the category of partial differen-
tial equations are diffieties, which duly formalize the vague idea of the “space of all
solutions” of a PDE. Diffieties are a kind of infinite-dimensional manifolds, and the
specific differential calculus on them, called secondary calculus, is a native language
to deal with PDEs and especially with NPDEs (see [66, 27, 29]).

Below we shall show how to come to secondary calculus and hence to the general
theory of (nonlinear) partial differential equations by trying to answer the question
“what are symmetries of a PDE”. It is worth stressing that Klein’s Erlangen program
was a good guide in this expedition, which was decisive in finding the right way at
some crucial moments.
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2 Evolution of the notion of symmetry
for differential equations

A retrospective view on how the answer to the question “what are symmetries of
a PDE” evolved historically will be instructive for our further discussion. From the
very beginning this question was more implicitly than explicitly related with the an-
swer to question “what is a PDE”. It seems that the apparent absurdity of this question
prevented its exact formulation and hence slowed down the development of the gen-
eral theory.

Below we shall use the following notation. If � D .�1; : : : ; �n/ is a multiindex,
then j� j D �1 C � � � C �n, and

@j	 jf .x/
@x	

D @sf .x/

@x
	1

1 : : : x
	n
n

; j� j D s; f .x/ D f .x1; : : : ; xn/:

We assume that @
j�jf
@x� D f if � D .0; : : : ; 0/.

Standard (“classical”) definition. According to the commonly accepted point of
view a system of PDEs is a set of expressions

Fi .x; u; uŒ1
; : : : ; uŒk
/ D 0; i D 1; 2; : : : ; l; (6.1)

where x D .x1; : : : ; xn/ are independent variables, u D .u1; : : : ; um/ dependent
ones, and uŒs
 stands for the totality of symbols ui	 ; 1 � i � m; with j� j D s.
Further we shall use short “PDE” for “system of PDEs” and, accordingly, write

F.x; u; uŒ1
; : : : ; uŒk
/ D 0 assuming that F D .F1; : : : ; Fl /:

Solutions. A system of functions f1.x/; : : : ; fm.x/ is a solution of the PDE (6.1)

if the substitutions @
j�jf i

@x� ! ui	 transform the expressions (6.1) to functions of x that
are identically equal to zero.

This traditional view on PDEs is presented in all, modern and classical, textbooks.
For instance, in Wikipedia one may read that a PDE is “an equation that contains
unknown multivariable functions and their partial derivatives” or “une équation aux
dérivées partielles (EDP) est une équation dont les solutions sont les fonctions incon-
nues vérifiant certaines conditions concernant leurs dérivés partielles.”

Symmetries: the first idea. The “common sense” coherent with this point of view
suggests to call a symmetry of PDE (6.1) transformations

xi D �i . Nx1; : : : ; Nxn/; i D 1; : : : ; n; uj D  j . Nu1; : : : ; Num/; j D 1; : : : ; m; (6.2)

of dependent and independent variables that “preserve the form” of relations (6.1).
More exactly, this means that the so-obtained functions NFi D NFi . Nx; Nu; NuŒ1
; : : : ; NuŒs
/s
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are linear combinations of functions Fi s with functions of x; u; uŒ1
; : : : ; uŒk
 as coef-
ficients. Here we used the confusing classical notation where .x; u/ stands for coor-
dinates of the image of the point . Nx; Nu/. Also, it is assumed that the transformations
of the symbols ui	 are naturally induced by those of x and u.

Many fundamental equations in physics and mechanics inherit space-time sym-
metries, and these are “first idea” symmetries. Very popular in mechanics of continua
dimensional analysis is also based on the so-understood concept of symmetry (see
[4, 5, 43]).

Example 2.1. The Burgers equation ut D uxx C uux is invariant, i.e., symmetric,
with respect to space shifts .x D Nx C c; t D Nt ; u D Nu/, time shifts .x D Nx; t D
Nt C c; u D Nu/ and the passage to another Galilean inertial frame moving with the ve-

locity v .x D Nx C vt; t D Nt ; u D Nu/. This equation possesses also scale symmetries:
x D � Nx; t D �2 Nt ; u D ��1 Nu; � 2 R.

The above definition of a symmetry is based on the a priori premise that the di-
vision of variables into dependent and independent ones is an indispensable part of
the definition of a PDE. However, many arguments show that this point of view is too
restrictive. In particular, numerous tricks that were found by hands to resolve vari-
ous concrete PDEs involves transformations which do not respect this division. For
instance, transformations

x D Nx
� Nt C 1; t D Nt

� Nt C 1 ; u D NuC �.Nt Nu � Nx/

depending on a parameter � 2 R leave the Burgers equations invariant. They, how-
ever, do not respect sovereignty of the dependent variable u.

In this connection, a more obvious and important argument is that

what is called functions in the traditional definition of a PDE are not,
generally, functions but elements of coordinate-wise descriptions of cer-
tain objects, like tensors, submanifolds, etc.

Indeed, if the dependent variables u are components of a tensor, then a transformation
of independent variables induces automatically a transformation of independent ones.
So, the division of variables into dependent and independent ones cannot, in principle,
be respected in such cases. Moreover, this, as banal as well-known observation, which
is nevertheless commonly ignored, poses a question

what are “independent variables”, i.e., what are mathematical objects
that are the subject of PDEs?

The “obvious” answer that these are “objects that are described coordinate-wisely
by means of functions” is purely descriptive and hence not very satisfactory. In fact,
this question is neither trivial, nor stupid, and, in particular, its analysis directly leads
to the conception of jets (see below).
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Symmetries: the second idea. Under the pressure of the above arguments it seems
natural to call a symmetry of the PDE (6.1) a transformation of independent and de-
pendent, which respect the status of independent variables only, i.e., a transformation
of the form �

xi D �i . Nx1; : : : ; Nxn/; i D 1; : : : ; n;
uj D  j . Nx1; : : : ; Nxn; Nu1; : : : ; Num/; j D 1; : : : ; m: (6.3)

This idea is consistent with many situations in physics and mechanics where space-
time coordinates play the role of independent variables, while “internal” characteris-
tics of the considered continua, fields, etc. refer to dependent ones. Mathematically,
these quantities are represented as sections of suitable fiber bundles, and transforma-
tions that preserve the bundle structure are exactly of the form (6.3). Gauge transfor-
mations in modern physics are of this kind.

On the other hand, since the second half of 18th century, the development of dif-
ferential geometry put in light various problems related with surfaces and, later, with
manifolds and their maps (see [41, 15, 10]) formulated in terms of PDEs. A surface
in the 3-dimensional Euclidean space E3 is not, generally, the graph of a function.
So, the phrase that the equation

.1C u2x/uyy � 2uxuyuxy C .1C u2y/uxx D 0 (6.4)

is the equation of minimal surfaces is not, rigorously speaking, true. More exactly, it
is true only locally for surfaces of the form z D u.x; y/ with .x; y; z/ being standard
Cartesian coordinates in E3. So, the question “what is the true (global) equation of
minimal surfaces” should be clarified. This question, which was historically ignored,
becomes, however, rather relevant if one thinks about global topological properties
of minimal surfaces. Also, isometries of E3 preserve the class of minimal surfaces
and hence they must be considered as symmetries of the “true” equation of minimal
surfaces in any reasonable sense of this term. But, generally, these transformations
do not respect the status of both independent and dependent variables. This and many
other similar examples show that the second idea is still too restrictive.

Symmetries: the third idea. The next obvious step is to consider transformations

xi D �i . Nx1; : : : ; Nxn; Nu1; : : : ; Num/; uj D  j . Nx1; : : : ; Nxn; Nu1; : : : ; Num/;
i D 1; : : : ; n; j D 1; : : : ; m: (6.5)

as eventual symmetries of PDEs. In this form the idea of a symmetry of a PDE was
formulated by S. Lie at the end of 19th century and was commonly accepted for a long
time up to the discovery of integrable systems at the late 1960s, when some strong
doubts about it arose. Symmetries of the form (6.5) are called point symmetries in
order to distinguish them from contact symmetries (see below) and more general ones
that recently emerged.
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Symmetries: the fourth incomplete idea. But Lie himself created the ground for
such doubts by developing the theory of first order PDEs in the form of contact ge-
ometry. From this point of view natural candidates for symmetries of such a PDE are
contact transformations, which mix independent and dependent variables and their
first order derivatives in an almost arbitrary manner. In particular, this means that,
generally, transformations of dependent and independent variables involve also first
derivatives. i.e.,�

xi D �i . Nx1; : : : ; Nxn; Nu; Nux1
; : : : ; Nuxm

/; i D 1; : : : ; n;
u D  j . Nx1; : : : ; Nxn; Nu; Nux1

; : : : ; Nuxm
/:

(6.6)

Transformations (6.6) are to be completed by transformations of first derivatives

xi D �i . Nx1; : : : ; Nxn; Nu; Nux1
; : : : ; Nuxm

/; i D 1; : : : ; n;
in a way that respects the “contact condition” d Nu �Pn

iD1 Nuxi
dxi D 0.

Contact transformations can be naturally extended to transformations of higher or-
der derivatives and, therefore, considered as candidates for true symmetries of PDEs
with one dependent variable. For instance, as such they are very useful in the study
of Monge–Ampère equations (see [33]). In other words, the third idea becomes too
restrictive, at least, for equations with one dependent variable.

The above discussion leads to a series of questions:

Question 1 What are analogues of contact transformations for PDEs with more than
one dependent variable?

Question 2 Are there higher order analogues of contact transformations, i.e., trans-
formations mixing dependent and independent variables with derivatives of order
higher than one?

To answer this questions we, first, need to bring the traditional approach to PDEs
to a more conceptual form. In particular, a coordinate-free definition of a PDE equiv-
alent to the standard one is needed. This is done in the next section.

3 Jets and PDEs

Various objects (functions, tensors, submanifolds, smooth maps, geometrical struc-
tures, etc.) that are subject of PDEs may be interpreted as submanifolds of a suitable
manifold. For instance, functions, sections of fiber bundles, in particular, tensors,
and smooth maps may be geometrically viewed as the corresponding graphs. So,
we assume this unifying point of view and interpret PDEs as differential restrictions
imposed on submanifolds of a given manifold.
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3.1 Jet spaces Thus, objects of our further considerations will be n-dimensional
submanifolds of an .nCm/-dimensional submanifold E. Let L 	 E be such a sub-
manifold. In order to locally describe it in a local chart .y1; : : : ; ynCm/ we must
choose n coordinates among these which are independent on L, say, .yi1 ; : : : ; yin/
and declare the remaining yj s to be dependent ones. The notation x1 D yi1 ; : : : ; xn D
yin ; u

1 D yj1
: : : ; um D yjm

with fj1; : : : ; jmg D f1; : : : ; n C mg n fi1; : : : ; ing
stresses this artificial division of local coordinates into dependent and independent
ones. We shall refer to .x; u/ as a divided chart. By construction, L is locally de-
scribed in this divided chart by equations of the form ui D f i .x/, i D 1; : : : ; n. The
next step is to understand what is the manifold in which .x; u; uŒ1
 : : : ; uŒk
/ is a local
chart. The answer is as follows.

Let M be a manifold, z 2 M and z D ff 2 C1.M/ j f .z/ D 0g the ideal of
the point z. Elements of the quotient algebra Jz.M/ D C1.M/=kC1

z (sz stands
for the s-th power of the ideal z) are called k-th order jets of functions at the point
z 2 M . The k-th jet of f at z, denoted by Œf �kz , is the image of f under the
factorization homomorphism C1.M/! Jz.M/. This definition also holds for k D
1 if we put 1

z D
T
k2N kz . It is easy to see that Œf �kz=Œg�kz if and only if in a local

chart all the derivatives of the functions f and g of order� k at the point z are equal.
Two n-dimensional submanifolds L1; L2 	 E are called tangent with the order

k at a common point z if for any f 2 C1.M/, Œf jL1
�kz D 0 implies Œf jL2

�kz D 0
and vice versa. Obviously, k-th order tangency is an equivalence relation.

Definition 3.1. The equivalence class of n-dimensional submanifolds of E, which
are k-th order tangent to L at z 2 L, is called the k-th order jet of L at z and is
denoted by ŒL�kz .

The set of all k-jets of n-dimensional submanifolds L of E is naturally supplied
with the structure of a smooth manifold, which will be denoted by J k.E; n/. Namely,
associate with an n-dimensional submanifold L of E the map

jk.L/ W L! J k.E; n/; L 3 z 7! ŒL�kz

and call a function � on J k.E; n/ smooth if jk.L/�.�/ 2 C1.L/ for all n-dimensio-
nal L 	 E. The so-defined smooth function algebra will be denoted by Fk.E; n/,
i.e., C1.J k.E; n// D Fk.E; n/.
Remark 3.1. If k < 1 the above definition of the smooth structure on J k.E; n/
is equivalent to the standard one, which uses charts and atlases (see below). But it
becomes essential for k D 1, since the standard “cartographical” approach in this
case creates some boring inconveniences.

If L is given by equations ui D f i.x/, i D 1; : : : ; n, in a divided chart and
.x01 ; : : : ; x

0
n; u

1
0 : : : ; u

m
0 / are coordinates of z in this chart, then, as it is easy to see,

ŒL�kz is uniquely defined by the derivatives

ui	;0 D
@j	 jf i

@x	
.x01; : : : ; x

0
n/; 1 � i � m; j� j � k; (6.7)
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and vice versa. So, the numbers x0j together with the numbers ui	;0 may be taken for

local coordinates of the point 	 D ŒL�kz 2 J k.E; n/. By putting ui	 .	/ D u	;0, we
have

jk.L/
�.ui	 / D

@j	 jf j

@x	

and we see that the functions ui	 , 1 � i � m, j� j � k, together with the functions xj
form a smooth local chart on J k.E; n/.

Thus we see that .x; u; uŒ1
; : : : ; uŒk
/ is a local chart on J k.E; n/ and hence (6.1)
is the equation of a submanifold in J k.E; n/. This allows us to interpret the standard
definition of PDEs in an invariant coordinate-free manner.

Definition 3.2. A system of PDEs of order k imposed on n-dimensional submani-
folds of a manifold E is a submanifold E of J k.E; n/.

Remark 3.2. E as a submanifold of J k.E; n/ may have singularities.

3.2 Jet tower Note that E is naturally identified with J 0.E; n/ W z $ ŒL�0z, and
natural projections

�k;l W J k.E; n/! J l.E; n/; ŒL�kz 7! ŒL�lz; l � k;
relate jet spaces of various orders in a unique structure

E D J 0.E; n/ �1;0 � J 1.E; n/ �2;1 � � � � �k;k�1 � J k.E; n/
�kC1;k � : : : J1.E; n/: (6.8)

It is easy to see that J1.E; n/ is the inverse limit of the system of maps f�k;lg.
Also note that �k;l W J k.E; n/ ! J l.E; n/ is a fiber bundle. Moreover, �k;k�1 W
J k.E; n/ ! J k�1.E; n/ is an affine bundle if k � 2 and m > 1 or if k � 3 and
m D 1 (see [30, 44]).

Dually to (6.8), smooth function algebras on jet spaces form a telescopic system
of inclusions

C1.E/ D F
��

1;0! F1
��

2;1�! � � �
��

k;k�1�! Fk
��

kC1;k�! : : :F1: (6.9)

So, F1 may be viewed as the direct limit of (6.9). By identifying Fk with ��
1;k

.Fk/
we get the filtered algebra F0 	 F1 	 � � � 	 Fk 	 : : : ; F1 DS1

kD0 Fk .
Since two submanifolds of the same dimension are first order tangent at a point

z if and only if they have the common tangent space at z, ŒL�1z is naturally identified
with TzL. In this way J 1.E; n/ is identified with the Grassmann bundle Grn.E/ of
n-dimensional subspaces tangent to E , and the canonical projection Grn.E/ ! E
is identified with �1;0. In particular, the standard fiber of �1;0 is the Grassmann
manifold GrnCm;n so that �1;0 is not an affine bundle. If m D 1, then the fiber of
�2;1 is the Lagrangian Grassmannian.
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Example 3.1. The equation E of minimal surfaces in the 3-dimensional Euclidean
space E3 is a hypersurface in J 2.E3; 2/. The projection �2;1 W E ! J 1.E3; 2/ is
a nontrivial bundle whose fiber is the 2-dimensional torus. So, rigorously speaking,
(6.4) is not the equation of minimal surfaces but a local piece of it.

This and many other similar examples show that, generally, (6.1) is just a local
coordinate-wise description of a PDE.

3.3 Classical symmetries of PDEs The language of jet spaces not only gives
a due conceptual rigor to the traditional theory of PDEs but it also simplifies many
technical aspects of it and makes transparent and better workable various basic con-
structions. This will be shown in the course of the subsequent exposition. But now
we shall illustrate this point by explaining how “point transformations” acts on PDEs.

First, we observe that (6.3) is just a local coordinate-wise description of a diffeo-
morphism F W E ! E. Now the question we are interested in is: how does F act on
jets? The answer is obvious: F induces the diffeomorphism

F.k/ W J k.E; n/! J k.E; n/; ŒL�kz 7! ŒF .L/�kF.z/; (6.10)

called the k-lift of F . This immediately leads to formulate the definition of a “classi-
cal” (= “point”) symmetry of a PDE.

Definition 3.3. A classical/point symmetry of a PDE E 	 J k.E; n/ is a diffeomor-
phism F W E ! E such that F.k/.E/ D E .

Similarly one can define lifts of “infinitesimal point transformations”, i.e., vector
fields on E. Recall that if X is a vector field on E and Ft W E ! E is the flow it
generates, then

X D d.F �
t /

dt

ˇ̌̌
ˇ
tD0

with F �
t W C1.E/! C1.E/:

Then the lift X.k/ of X to J l.E; n/ is defined as

X.k/ D
d..Ft/

�
.k/
/

dt

ˇ̌̌
ˇ̌
tD0

:

Definition 3.4. A vector field X on E is an infinitesimal classical/point symmetry of
a PDE E 2 J k.E; n/ if X.k/ is tangent to E .

Nonlinear partial differential operators are also easily defined in terms of jets.

Definition 3.5. A (nonlinear) partial differential operator � of order k sending n-
dimensional submanifolds of E to E 0 is defined as the composition ˆ ı jk with
ˆ W J k.E; n/! E 0 being a (smooth) map, i.e., �.L/ D ˆ.jk.L//.
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For instance, functions on J l.E; n/ are naturally interpreted as (nonlinear) differen-
tial operators of order l .

The above definitions and constructions are easily specified to fiber bundles.
Namely, if � W E ! M; dim M D n, is a fiber bundle, then the k-th order jet
Œs�kx of a local section of it s W U ! E (U is an open in M ) at a point x 2 M is de-
fined as Œs�kx D Œs.U /�ks.x/. These specific jets form an everywhere dense open subset

in J k.E; n/ denoted by J k.�/ and called the k-order jet bundle of � . The substitute

of maps jk.L/ in this context are maps jk.s/
defD jk.s.U //. Additionally, we have

naturaI projections �k D � ı �k;0 W J k.�/!M . If � is a vector bundle, then �k is
a vector bundle too, and the equation E 	 J k.�/ is linear if E is a linear sub-bundle
of �k , etc. For further details concerning the “fibered” case, see [29, 70, 44].

4 Higher order contact structures and generalized
solutions of NPDEs

4.1 Higher order contact structures Now we are going to reformulate the
standard definition of a solution of a PDE in a coordinate-free manner. Put L.k/ D
Im jk.L/ for an n-dimensional submanifold of E. Obviously, L.k/ is an n-dimen-
sional submanifold L of J k.E; n/, which is projected diffeomorphically onto L via
�k;0.

Definition 4.1. L is a solution in the standard sense of a PDE E 	 J k.E; n/ if
L.k/ 	 E .

If ui D f i .x/; i D 1; : : : ; n are local equations of L, then

ui	 D
@j	 jf i

@x	
.x/; i D 1; : : : ; n; j� j � n;

are local equations of L.k/ in J k.E; n/. This shows that the coordinate-free defini-
tion 4.1 coincides with the standard one. Also, we see that the L.k/s form a very
special class of n-dimensional submanifolds in J k.E; n/. This class is not intrinsi-
cally defined, and hence Definition 4.1 is not intrinsic. For this reason it is necessary
to supply J k.E; n/ with an additional structure, which allows to distinguish the sub-
manifolds L.k/ from others. Such a structure is a distribution on J k.E; n/ defined as
follows.

Definition 4.2. The minimal distribution Ck W J k.E; n/ 3 	 7! Ck
�
	 T� .J k.E; n//

on J k.E; n/ such that all the L.k/ are integral submanifolds of it, i.e., T� .L.k// 	
Ck
�
; 8	 2 L.k/, is called the k-th order contact structure or the Cartan distribution

on J k.E; n/.
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It directly follows from the definition that

Ck� D spanfT� .L.k// for all L such that L.k/ 3 	g: (6.11)

Due to the importance of the subspaces T� .L.k// 	 T� .J k.E; n// we shall call them
R-planes (at 	 ). By construction any R-plane at 	 belongs to Ck

�
. The following

simple fact is very important and will be used in various constructions further on.

Lemma 4.1. Let 	 D ŒL�kz D ŒN �kz and 	 0 D �k;k�1.	/. Then T� 0.L.k�1// D
T� 0.N.k�1// and hence the R-plane R� D T� 0.L.k�1// is uniquely defined by 	 .
Moreover, the correspondence 	 7! R� between points of J k.E; n/ and R-planes at
points of J k�1.E; n/ is biunique.

This lemma allows to identify the fiber ��1
k;k�1.	

0/ with the variety of all R-planes at

	 and hence J k.E; n/ with the variety of R-planes at points of J k�1.E; n/.
Below we list some basic facts concerning the Cartan distribution and R-planes

(see [60, 30, 70]).

Proposition 4.1.

1. Ck
�
D .d��k;k�1/�1.R� / with d��k;k�1 W T� .J k.E; n// ! T� 0.J k�1.E; n//

being the differential of �k;k�1 at 	 . In particular,
d��k;k�1.Ck� / 	 Ck�1

� 0 .

2. In local coordinates the Cartan distribution is given by the equations

!i	
defD dui	 �

X
j

ui	C1j
dxj D 0; j� j < k; where .� C 1j /i D �i C ıij ;

or, dually, is generated by the vector fields

Dk
i D

@

@xi
C

X
j;j	 j<k

u
j
	C1i

@

@u
j
	

; i D 1; : : : ; n; and
@

@u
j
	

; j� j D k:

3.

dim Ck� D m
�
nC k � 1

k

�
C n; if 0 � k <1I dim C1

� D n:

4. Tautologically, a point 	 D ŒL�1z 2 J1.E; n/ is the inverse limit of 	k D
�1;k.	/ D ŒL�kz ; k !1. Then C1

�
is the inverse limit of the chain

� � �
d�k

�k;k�1 � Ck�k

d�kC1
�kC1;k � CkC1

�kC1

d�kC2
�kC2;kC1 � : : :
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5. Distributions Ck ; k < 1, are, in a sense, “completely non-integrable”, while
their inverse limit C1 is completely (Frobenius) integrable and locally gener-
ated by commuting total derivatives

Di D @

@xi
C
X
j;	

u
j
	C1i

@

@u
j
	

; i D 1; : : : ; n:

6. If an n-dimensional integral submanifold N of Ck; k < 1, is transversal to
fibers of �k;k�1, then, locally, N is of the form L.k/ and, therefore, �k;0.N / is
an immersed n-dimensional submanifold of E.

Cartan’s forms !i	 figuring in assertion (2) of the above proposition were system-
atically used by É. Cartan in his reduction of PDEs to exterior differential systems.
Hence the term “Cartan distribution”.

Note that if m D 1, then the manifold J 1.E; n/ supplied with the Cartan dis-
tribution C1 is a contact manifold. The contact distribution C1 is locally given by
the classical contact form du �Pn

iD1 uidxi D 0. So, Ck whose construction word
for word mimics the classical construction of contact geometry may be viewed as its
higher order analogue, i.e., the k-th order contact structures.

Recall now how the theory of one 1-st order PDE with one independent variable
is formulated in terms of contact geometry. Let K; dim K D r C 1, be a manifold
supplied with an r-dimensional distribution C W K 3 x 7! Cx 	 TxK. The fiber
at x 2 K of the normal to the C vector bundle �C W NC ! K is TxK=Cx, and
dim �C D 1. We shall write X 2 C if the vector field X belongs to C, i.e., Xx 2
Cx; 8x 2 K. By abusing language we shall denote also by C the C1.K/-module of
vector fields belonging to C and put NC D �.�C/. The curvature of C is the following
C1.K/-bilinear skew-symmetric form 
 with values in NC:


C.X; Y / D ŒX; Y � mod C; X; Y 2 C:

C is nondegenerate if the map

C 3 X 7! 
C.X; �/ 2 ƒ1.C/˝C1.K/ NC

is an isomorphism of C1.K/-modules. The pair .K; C/ is a contact manifold if the
2-form 
C is nondegenerate. In such a case r is odd, say, r D 2nC 1.

This definition of contact manifolds is not standard (see [2, 33]) but is more con-
venient for our purposes. By the classical Darboux lemma a contact manifold locally
possesses canonical coordinates .x1; : : : ; xn; u; p1; : : : ; pn/ in which C is given by

the 1-form !
defD du �Pn

iD1 pidxi D 0. Then e D Œ@=@u mod C� is a local base of
NC and 
C D �d! ˝ e D .Pn

iD1 dpi ^ dxi /˝ e.
If a hypersurface E 	 K is interpreted as a 1-st order PDE, then a (general-

ized) solution of E is a Legendrian submanifold L in K belonging to E . Recall that
a Legendrian submanifold L is an n-dimensional integral submanifold of C, or, more
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conceptually, a locally maximal integral submanifold of C. “Locally maximal” means
that even locally L does not belong to an integral submanifold of greater dimension.

These considerations lead to conjecture that

locally maximal integral submanifolds of the Cartan distribution Ck are
analogues of Legendrian submanifolds in contact geometry and that the
solutions of a PDE E 	 J k.E; n/ are such submanifolds belonging to E .

4.2 Locally maximal integral submanifolds of Ck Motivated by this con-
jecture we shall describe locally maximal integral submanifolds of Ck . Let W 	
J k�1.E; n/; k � 1, be an integral submanifold of Ck�1 which is transversal to the
fibers of the projection �k�1;k�2. By Proposition 4.1, (6), dim W � n. Associate
with W the submanifold L.W / 	 J k.E; n/:

L.W / D f	 2 J k.E; n/ jR� 
 T� 0W with 	 0 D �k:k�1.	/ 2 W g:
Obviously, L.L.k�1// D L.k/ and L.f	g/ D ��1

k;k�1.	/ for any point

	 2 J .k�1/.E; n/.

Proposition 4.2. (see [60, 30, 70])

(1) L.W / is a locally maximal integral submanifold of Ck .

(2) If dim W D s, then

dimL.W / D s Cm
�
nC k � s � 1
n � s � 1

�
:

(3) If N 	 J k.E; n/ is a locally maximal integral submanifold, then there is an
open and everywhere dense subset N0 in N such that

N0 D
[
˛

U˛ with U˛ being an open domain in L.W˛/

(4) If dimW1 < dimW2, then dimL.W1/ > dimL.W2/ except in the cases
.i/ n D m D 1; .ii/ k D m D 1 and .iii/ m D 1; dimW1 C 1 D dimW2 D n.

An important consequence of Proposition 4.2 is that it disproves the above con-
jecture. Existence of locally maximal integral submanifolds of different dimensions
is what makes a substantial difference between higher order contact structures and the
classical original. In particular, this creates a problem in the definition of solutions of
PDEs in an intrinsic manner. To resolve it we need some additional arguments.

Situations (i)–(iii) in assertion (4) of Proposition 4.2 will be called exceptional,
while the remaining ones regular. This assertion shows that in the regular case the
integral submanifolds W˛ figuring in assertion (3) must have the same dimension.
This dimension will be called the type of the maximal integral submanifold N . For
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some other reasons, which we shall skip, the notion of type can also be defined in
the exceptional cases (ii) and (iii). On the contrary, in the case (i) (classical contact
geometry!) all maximal integral submanifolds are Legendrian and hence are locally
equivalent.

Now we may notice that, except for the case k D m D 1 (classical contact geome-
try), the fibers of the projection�k;k�1; k > 1 are intrinsically characterized as locally
maximal integral submanifolds of zero type. Therefore, the manifold J k�1.E; n/
may be interpreted as the variety of such submanifolds and, similarly, the distribu-
tion Ck�1 can be recovered from Ck . Therefore, the obvious induction arguments
show that by starting from the k-th order contact manifold .J k.E; n/; Ck/ we can
intrinsically recover the whole tower

J k.E; n/
�k;k�1�! J k�1.E; n/

�k�1;k�2�! � � � ��C1;��! J �.E; n/

where � D 0 if m > 1 and � D 1 if m D 1. In particular, the projections �k;0 (resp.,
�k;1) can be intrinsically characterized in terms of the k-th order contact structure
if m > 1 (resp., if m D 1 and k > 1/. So, if m > 1, submanifolds L.k/ are
characterized in these terms as locally maximal integral submanifolds of type n that
diffeomorphically project on their images via �k;0. If m D 1, then only the contact
manifold .J 1.E; n/; C1/ can be intrinsically described in terms of a k-th order contact
structure as the image of the intrinsically defined projection �k;1. So, in this case in
order to characterize the submanifoldsL.k/ we additionally need to supply the image
of �k;1 with a fiber structure, which mimics �k;0.

4.3 Generalized solutions of NPDEs The above considerations lead us to the
following definition.

Definition 4.3.

1. A locally maximal integral submanifold of type n will be called R-manifold.
In particular, submanifolds L.k/ are R-manifods.

2. Generalized .resp., “usual”/ solutions of a PDE E 	 J k.E; n/ areR-manifolds
.resp., manifolds L.k// belonging to E .

With this definition we gain

the concept of generalized solutions for nonlinear PDEs, which, prin-
cipally, cannot be formulated in terms of functional analysis as in the
case of linear PDEs (see [51, 48, 17]).

This is one of many instances where a geometrical approach to PDEs can be in no
way substituted by methods of functional analysis or by other analytical methods.

Definition 4.3 may be viewed as an extension of the concept of a generalized solu-
tion of a linear PDE in the sense of Sobolev–Schwartz to general NPDEs. We have no
sufficient “space-time” to discuss this very interesting question here. A very rough
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idea about this relation is that a generalized solution in the sense of Definition 4.3
may be viewed as a multivalued one. If the equation is linear, then it is possible to
construct a 1-valued solution just by summing up various branches of a multivalued
one. The result of this summation is, generally, no longer a smooth function but a
“generalized” one. A rigorous formalization of this idea requires, of course, a more
delicate procedure of summation and the Maslov index (see [40]) naturally appears
in this context.

4.4 PDEs versus differential systems According to É. Cartan, a PDE E 	
J k.E; n/ can be converted into a differential system by restricting the distribution Ck
to E . The restricted distribution denoted by CkE is defined as

CkE W E 3 	 7! Ck \ T�E :
Originally, É. Cartan used the Pfaff (exterior) system !i	 D 0; i D 1; : : : ; m; j� j < k;
in order to describe CkE , and this explains the term exterior differential system.

The passage from the equation E understood as a submanifold of J k.E; n/ to
the differential system .E ; CkE / means, in essence, that we forget that E is a submani-
fold of J k.E; n/ and consider it as an abstract manifold equipped with a distribution.
Cartan was motivated by the idea of replacing non-invariant, i.e., depending on the
choice of local coordinate, language of partial derivatives by the invariant calculus
of differentials and hence of differential forms. The idea that the general theory of
PDEs requires an invariant and adequate language is of fundamental importance, and
É. Cartan was probably the first who raised it explicitly. On the other hand, it turned
out later that the language of differential forms is not sufficient in this sense. For in-
stance, Proposition 4.2 illustrates the fact that the concept of a solution for a generic
differential system is not well defined because of the existence of integral submani-
folds of different types. The rigidity theory (see [60, 30, 70]) sketched below makes
this point more precise.

First, note that locally maximal integral submanifolds of the restricted distribu-
tion CkE are intersections of such submanifolds for Ck with E . So, if E is not very
overdetermined, i.e., if the codimension of E in J k.E; n/ is not too big, then the
difference between locally maximal integral submanifolds of Ck of different types
survives the restriction to E . So, the information about this difference in an explicit
form gets lost when passing to the differential system .E ; CkE /. The problem to recover
it becomes rather difficult especially if the 1-forms !i 2 ƒ1.E/ of the Pfaff system
!i D 0 describing the distribution CkE are arbitrary, say, not Cartan ones. Moreover,
if we have a generic differential system .M;D/ with D D f�i D 0g; �i 2 ƒ1.M/,
then it is not even clear which class of its integral submanifolds should be called so-
lutions. To avoid this inconvenience, É. Cartan proposed to formulate the problem
associated with a differential system as the problem of finding its integral subman-
ifolds (locally maximal or not) of a prescribed dimension. But numerous examples
show that a differential system may possess integral submanifolds of an absolutely
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different nature, which have the same dimension. One of the simplest examples of
this kind is the differential system .J k.E; 1/; Ck/ with dimE D 2; k > 1, for which
locally maximal integral submanifolds of types 0 (fibers or the projection �k;k�1) and
1 (R-manifolds) are all 1-dimensional. Moreover, integral submanifolds of type 0 are
irrelevant/“parasitic” in the context of the theory of differential equations.

Secondly, an equation E 	 J k.E; n/ is called rigid if the k-th order contact man-
ifold .J k.E; n/; Ck/ can be recovered if .E ; CkE / as an abstract differential system is
only known. For instance, if the codimension of E in J k.E; n/ is less than the differ-
ence of dimensions of locally maximal integral submanifolds of types 0 and 1, then E
is, as a rule, rigid. Indeed, in this case integral submanifolds of .E ; CkE / of absolutely
maximal dimension are intersections of fibers of �k;k�1 with E . In other words, these
are fibers of the projection �k;k�1 jE W E ! J k�1.E; n/. If, additionally, this projec-
tion is surjective, then J k�1.E; n/ is recovered as the variety of integral submanifolds
of .E ; CkE / of maximal dimension. Next, under some weak condition projections of
spaces CkE;� ; 	 2 E , on the so-interpreted jet space J k�1.E; n/ span the distribu-

tion Ck�1. In this way .J k�1.E; n/; Ck�1/ is recovered from .E ; CkE / and, finally,
.J k.E; n/; Ck/ is recovered from .J k�1.E; n/; Ck�1/ as the variety of R-planes on
J k�1.E; n/ according to Proposition 4.1, (1). Thus converting rigid equations into
differential systems is counterproductive, since this procedure creates non-necessary
additional problems. In this connection it is worth mentioning that the most impor-
tant PDEs in geometry, mechanics and physics we deal with are determined or slightly
overdetermined systems of PDEs, like Maxwell or Einstein equations, and hence are
rigid.

Even more important arguments, which do not speak in favor of differential sys-
tems, come from the fact that the calculus of differential forms is a small part of
a much richer structure formed by natural functors of differential calculus and objects
representing them. For instance, indispensable for formal integrability theory diff-
and jet-Spencer complexes are examples of this kind (see [50, 54, 59, 44, 30, 70]).
Finally, our distrust of differential systems is supported by the fact that practical com-
putations of symmetries, conservation laws and other quantities characterizing PDEs
become much more complicated in terms of differential systems.

4.5 Singularities of generalized solutions The concept of generalized solu-
tions for NPDEs, which is important in itself, naturally leads to an important part of
a general theory of PDEs, namely, the theory of singularities of generalized solutions.
Below we shall outline some key points of this theory.

Let N 	 J k.E; n/ be an R-manifold. A point 	 2 N is called singular of type
s if the kernel of the differential d��k;k�1 restricted to T�N is of dimension s > 0.
Otherwise, 	 is called regular. It should be stressed here that “singular” refers to
singularities of the map �k;k�1 jN , while, by definition, N is a smooth submanifold.
According to Proposition 4.1, (6), N is of the form L.k/ in a neighborhood of any
regular point.
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Put F� D .�k;k�1/�1.�k;k�1.	// (the fiber of �k;k�1 passing through 	 ) and
V Ck

�
D Ck

�
\ T� .F� /. The bend of N at a point 	 2 N is

B�N
defD kerd�

�
�k;k�1 jN

� D T�N \ T� .F� / 	 V Ck� :
Also, we shall call an s-bend (at 	 2 J k.E; n/) an s-dimensional subspace of V Ck

�
,

which is of the form B�N for someR-manifoldN . Bends are very special subspaces
in V Ck

�
. A remarkable fact is that s-dimensional bends are classified by s-dimensional

Jordan algebras of a certain class over R, which contains all unitary algebras (see
[64, 68]).

PDEs differ from each other by the types of singularities which their
generalized solutions admit.

For instance, 2-dimensional Jordan algebras associated with 2-dimensional bends are
2-dimensional unitary algebras and hence are isomorphic to one of the following three
algebras

C� D faC b� j a; b 2 R; �2 D �1g with � D ˙1 or 0:

Obviously, C� D C and CC D R ˚ R (as algebras). An equation in two indepen-
dent variables is elliptic (resp., parabolic or hyperbolic) if its generalized solutions
possess singularities of type C� (resp., C0; CC) only. Geometrically, singularities
corresponding to the algebra C are Riemann ramifications, while bicharacteristics of
hyperbolic equations reflect the fact that CC splits into the direct sum R˚ R.

Obviously, the simplest singularities correspond to the algebra R. They present
a kind of folding and can be analytically detected in terms of non-uniqueness of
Cauchy data. A similar analytic approach is hardly possible for more complicated
algebras. This explains why analogues of the classical subdivision of PDEs in two
independent variables into elliptic, parabolic and hyperbolic ones are not yet known.
This fact emphasizes once again that only analytical methods for PDEs, even linear
ones, are not sufficient and the geometrical approach is indispensable.

The description of singularities that solutions of a given PDE admit is naturally
settled as follows. Let † be a type of s-bends, which may be identified with the
corresponding Jordan algebra. If N is an R-manifold, then

N† D f	 2 N jB�N is of the type †g
is the locus of its singular points of type †. Generally, dimN† D n � s. If N is
a solution of a PDE E , then N† must satisfy an auxiliary system of PDEs, which
we denote by E†. For “good” equations E† is, generally, a nonlinear, undetermined
system of PDEs in n � s independent variables.

4.6 The reconstruction problem So, any PDE is not a single but is surrounded
by an “aura” of subsidiary equations, which put in evidence the internal structure of
its solutions. The importance of these equations becomes especially clear in the light
of the reconstruction problem:
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Whether the behavior of singularities of solutions of a PDE E uniquely
determines the equation itself or, equivalently, whether it is possible to
reconstruct E assuming that the E†s are known.

In a physical context this question sounds as

Whether the behavior of singularities of a field (medium, etc.) com-
pletely determines the behavior of the field (medium, etc.) itself?

A remarkable example of this kind is the deduction of Maxwell’s equations from the
elementary laws of electricity and magnetism (Coulomb, . . . , Faraday) (see [35]).

The reconstruction problem can be solved positively for hyperbolic NPDEs on the
basis of equations EFOLD that describe singularities corresponding to the algebra R.
The equations describing wave fronts of solutions of a linear hyperbolic PDE E are
part of the system EFOLD.

Example 4.1. Fold-type singularities for the equation uxx � 1
c2ut t �mu2 D 0.

Consider wave fronts of the form x D '.t/ and put

g D ujwave front; h D uxjwave front:

Then we have

� Rg C .cm/2g D ˙2c Ph
1 � 1

c2 P'2 D 0, P' D ˙c (
2
4 Equations describing the

behavior of fold-type
singularities

The second of these equations is of eikonal type and describes the space-time shapes
of singularities. On the contrary, the first equation describes a “particle” in the “field”
h. If this field is constant, Ph D 0, then the first equation represents a harmonic
oscillator of frequency � D mc.

Example 4.2. Fold-type singularities for the Klein–Gordon equation

.@2t � Er2 Cm2/u D 0:
Consider wave fronts of the form t D '.x1; x2; x3/ and g and h as in Example 4.1

EFOLD D
(
. Er'/2 D 1 eikonal type equation
r2hCm2h� g � .r2'/g D 2 Er' � Erg ???

The physical meaning of the second of these equations is unclear.

Example 4.3. The classical Monge–Ampère equations are defined as equations of
the form

S.uxxuyy � u2xy/C Auxx C Buxy C Cuyy CD D 0



158 Alexandre Vinogradov

with S;A;B; C;D being functions of x; y; u; ux; uy .see [33]/. As was already ob-
served by S. Lie this class of equations is invariant with respect to contact transfor-
mations. This fact forces to think that Monge–Ampère equations are distinguished by
some “internal” property. This is the case, and Monge–Ampère equations are com-
pletely characterized by the fact that the reconstruction problem for these equations
is equivalent to a problem in contact geometry .see [8, 39]/.

The reader will find in [36] further details and examples concerning the auxiliary
singularities equations. Some exact generalized solutions of Einstein equations (the
“square root” of the Schwarzshild solution, etc.) are described in [49].

4.7 Quantization as a reconstruction problem Let E be a PDE, whose so-
lutions admit fold-type singularities. Then we have the following series of intercon-
nected equations:

E H) EFOLD H) Eeikonal H) Echar: (6.12)

Here Eeikonal is the equation from the system EFOLD that describes space-time shape
(“wave front”) of fold-type singularities. It is a Hamilton–Jacobi equation (see Exam-
ples 4.1 and 4.2). In its turn Echar is the system of ODEs that describes characteristics
of Eeikonal. In the context where space-time coordinates are independent variables,
Eeikonal is a Hamiltonian system whose Hamiltonian is the main symbol of E . Now we
see that the correspondence

CHAR W E .PDE/ H) Echar .Hamiltonian system of ODEs/ (6.13)

is parallel to the correspondence between quantum and classical mechanics

BOHR W .Schrödinger’s PDE/ H) .Hamiltonian ODEs/: (6.14)

Moreover, the correspondence (6.13) is at the root of the famous “optics-mechanics
analogy”, which guided E. Schrödinger in his discovery of the “Schrödinger equa-
tion” (see Schrödinger’s Nobel lecture [47]).

It is remarkable that in “Cauchy data” terms, the correspondence (6.13) was
known already to T. Levi-Civita and he tried to put it at the foundations of quantum
mechanics (see [34]). From what is known today this attempt was doomed to failure.
However, the idea that quantization is something like the reconstruction problem ex-
plains well why numerous quantization procedures proposed up to now form a kind
of recipe book not based on some universal principles. Indeed, from this point of view
the quantization looks like an attempt to restore the whole system EFOLD on the basis
of knowledge of Echar only. This is manifestly impossible, since Echar depends only
on the main symbol of E . On the other hand, the above outlined solution singularity
theory admits some interesting generalizations and refinements, which not only keep
alive the Levi-Civita idea but even make it more attractive.

4.8 Higher order contact transformations and the Erlangen program
The above interpretation of PDEs as submanifolds of higher order contact manifolds
is the first step toward a “conceptualization” of the standard approach to PDEs. It is
time now to test its validity through the philosophy of the Erlangen program. First
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of all, this means that we have to describe the symmetry group of higher contact
geometries, i.e., the group of higher contact transformations.

Definition 4.4. A diffeomorphism/transformation ˆ W J k.E; n/ ! J k.E; n/ is
called a k-order contact if for any X 2 Ck; ˆ.X/ 2 Ck or, equivalently, d�ˆ.Ck� / D
Ck
ˆ.�/

; 8	 2 ˆ.

If ˆ is a k-th order contact, then, obviously, it preserves the class of locally max-
imal integral submanifolds of type s. In particular, it preserves the fibers of the pro-
jection �k;k�1 and hence the locally maximal integral submanifolds of type n that are
transversal to these fibers. But the latter are locally of the form L.k/ (Proposition 4.1,
(6)). This proves that the differential of ˆ sends R-planes into R-planes. By identi-
fying these R-planes with points of J kC1.E; n/ we see that ˆ induces a diffeomor-
phism ˆ.1/ of J kC1.E; n/. More exactly, if 	 2 J kC1.E; n/ and 	 0 D �kC1;k.	/,
then .d� 0ˆ/.R� / is an R-plane and hence is of the form R# for a # 2 J kC1.E; n/.
Then we put ˆ.	/ D # . Moreover, it directly follows from Proposition 4.1, (1), that
ˆ.1/ is a .k C 1/-order contact and the diagram

J kC1.E; n/
ˆ.1/�! J kC1.E; n/

# �kC1;k # �kC1;k
J k.E; n/

ˆ�! J k.E; n/

commutes. By continuing this process we, step by step, construct contact transfor-
mations

ˆ.l/ W J kCl.E; n/
F.1/�! J kCl.E; n/; ˆ.l/

defD .ˆ.l�1//.1/:

Theorem 4.4. Let ˆ W J k.E; n/ ! J k.E; n/; k > 0; be a k-order contact trans-
formation. Then ˆ D ‰.l/ .resp.,ˆ D ‰.l�1/ / where ‰ is a diffeomorphism of E if
m > 1 .resp., a contact transformation of J 1.E; n/ if m D 1/.

A proof of this fundamental result for the classical symmetry theory can be easily
deduced from the fact explained above that a k-th order contact transformation pre-
serves fibers of �k;k�1 and hence induces a .k � 1/-th order contact transformation
of J k�l.E; n/. For m D 1 this was proven by Lie and Bäcklund (see [60, 29]).

If one takes Definition 3.2 for a true definition of PDEs, then the definition of
a symmetry of a PDE should be

Definition 4.5. A symmetry of a PDE E 	 J k.E; n/ is

(1) a k-th order contact transformation ˆ W J k.E; n/ ! J k.E; n/ such that
ˆ.E/ D E .à la S. Lie/;

(2) a diffeomorphism ‰ W E ! E preserving the distribution CkE .à la É. Cartan/.
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The rigidity theory shows that Definitions (1) and (2) are equivalent for rigid
PDEs, i.e., for almost all PDEs of practical interest. Moreover, by Theorem 4.4,
Definitions 4.5 and 3.3 are equivalent in this case too.

Remark 4.1. There are analogues of Theorem 4.4 and Definition 4.5 for infinitesimal
k-order contact transformations and symmetries. They do not add anything new to
our discussion, and we shall skip them.

In the light of the “Erlangen philosophy” the result of Theorem 4.4 looks disap-
pointing. Indeed, it tells us that the group of k-order contact transformations coin-
cides with the group of first order transformations. So, higher order contact geome-
tries are governed by the same group as the classical one. This does not meet a natural
expectation that transformations of higher order geometries should form some larger
groups. Hence, by giving credit to this philosophy, we are forced to conclude that

Definition 3.2 or what is commonly meant by a differential equation is
not a conceptual definition but should be considered just as a description
of an object, whose nature must be still discovered.

So, the question of what object is hidden under this description is to be investigated.
One rather evident hint is to examine the remaining case k D 1. This is psycholog-
ically difficult, since J1.E; n/ being an infinite-dimensional manifold of a certain
kind does not possess any “good” topology or norm, etc. which seem indispensable
for the existence of a “good” differential calculus on it. Another hint comes from
the principle “chercher la symétrie”. For instance, if E (resp., �) is a linear equation
(resp., a linear differential operator) with constant coefficients, then � sends solu-
tions of E to the solutions. For this reason � may be considered as a symmetry of E ,
finite or infinitesimal. Symmetries of this kind are not, generally, classical and their
analytical description involves partial derivatives of any order. Hence one may expect
that something similar takes place for general PDEs, and we are going to show that
this is the case.

5 From integrable systems to diffieties and
higher symmetries

5.1 New experimental data: integrable systems The discovery in the late
1960s of some remarkable properties of the now famous Korteweg-de Vries equa-
tion and later of other integrable systems brought to light various new facts, which
had no conceptual explanation in terms the classical symmetry theory. In particular,
any such equation is included in an infinite series of similar equations, the hierar-
chy, which are interpreted as commuting Hamiltonian flows with respect to an, in
a sense, infinite-dimensional Poisson structure. For this reason equations of this hi-
erarchy may be considered as infinitesimal symmetries of each other. Moreover, they
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involves derivatives of any order and hence are outside the classical theory (see [71]).
Therefore, attempts to include these non-classical symmetries in common with clas-
sical symmetries frames directly leads to infinite jets.

5.2 Infinite jets and infinite order contact transformations Recall that
the Cartan distribution C1 on J1.E; n/ is (paradoxically!) n-dimensional and com-
pletely integrable (Proposition 4.1, (5)). A consequence of this fact is that locally
maximal integral submanifolds of C1 are of the same type in sharp contrast with
finite-order contact geometries (Proposition 4.2). This is a weighty argument in favor
of infinite jets. After that we have to respond to the question of whether the group
of infinite-order contact transformations is broader than the group of classical ones.
More exactly, we ask whether there are infinite-order contact transformations that are
not of the form ˆ.1/ where ˆ is a finite-order contact transformation (see Theorem
4.4). Here ˆ.1/ stands for the direct limit of the ˆ.l/s. The answer is positive: this
(local) group consists of all invertible differential operators (in the generalized sense
outlined above) acting on n-dimensional submanifolds of E. These operators involve
partial derivatives of arbitrary orders and in this sense they justify the credit given to
infinite jets. We shall skip the details (see [61]), since the same question about infinite
order infinitesimal symmetries is much more interesting from the practical point of
view and at the same time it reveals some unexpected a priori details, which become
essential for further discussion.

Recall that an infinitesimal symmetry of a distribution C on a manifold M is
a vector field X 2 D.M/ such that ŒX; Y � 2 C if Y 2 C (symbolically, ŒX; C� 	 C).
Infinitesimal symmetries form a subalgebra in D.M/ denoted DC.M/. The flow
generated by a field X 2 DC.M/ moves, if it is globally defined, (maximal) integral
submanifolds of C into themselves. If it is not globally defined this flow moves only
sufficiently small pieces of integral submanifolds. In this sense we can speak of
a local flow in the “space of (maximal) integral submanifolds of C”.

If the distribution C is integrable/Frobenius, then it may be interpreted as a foli-
ation whose leaves are its locally maximal integral submanifold. In this case C is an
ideal in DC.M/. If N 	 M is a leaf of C, then any Y 2 C is tangent to N and,
therefore, the flow generated by Y leaves N invariant, i.e., any leaf of C slides along
itself under the action of this flow. We may interpret this fact by saying that the local
flow generated by Y on the “space of all leaves of C” is trivial. This is, obviously,
no longer so if Y 2 DC.M/ n C. Hence the flow generated by Y in the “space of all
leaves of C” is uniquely defined by the coset ŒY mod C�, and the quotient Lie algebra

Sym C defD DC.M/

C ; (6.15)

called the symmetry algebra of C, is naturally interpreted as the algebra of vector
fields on the “space of leaves” of C. It should be stressed that it would be rather
counterproductive to try to give a rigorous meaning to the “space of leaves”. On the
contrary, the above interpretation of the quotient algebra (6.15) is very productive and
may be interpreted as the smile of the Cheshire Cat.
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Now we shall apply the above construction to the distribution C1 and introduce
for this special case the following notation:

CD.J1.E; n// D C1; DC.J1.E; n// D DC1.J1.E; n//; ~ D Sym C1:
(6.16)

The Lie algebra ~ will play a prominent role in our subsequent investigation. At the
moment we know that it is the “algebra of vector fields on the space of all locally
maximal integral submanifolds of J1.E; n/”. As a first step we have to describe ~
in coordinates. However, in order to do that with due rigor we have to clarify before
what is differential calculus on infinite-dimensional manifolds of this kind. It is rather
obvious that the usual approaches based on “limits”, “norms”, etc. cannot be applied
to this situation. Therefore, we need the following digression.

5.3 On differential calculus over commutative algebras Let A be a uni-
tary, i.e., commutative and with unit, algebra over a field k and P and Q be some
A-modules.

Definition 5.1. � W P �! Q is a linear differential operator (DO) of order � m if
� is k-linear and Œa0; Œa1; : : : ; Œam; �� : : :�� D 0, 8a0; a1; : : : ; am 2 A.

Elements ai 2 A figuring in the above multiple commutator are understood as the
multiplication by ai operators.

If A D C1.M/; P D �.�/; Q D �.�/ with �; � being some vector bun-
dles, then Definition 5.1 is equivalent to the standard one. The “logic” of differen-
tial calculus is formed by functors of differential calculus together with their natural
transformations and representing them objects in a differentially closed category of
A-modules [54, 60, 59]. In particular, this allows one to construct analogues of all
known structures in differential geometry, say, tensors, connections, de Rham and
Spencer cohomology, an so on, over an arbitrary unitary algebra. The reader will
find in [42] an elementary introduction to this subject based on a physical motiva-
tion.

By applying this approach to the filtered algebra F1 D fFig (see (6.9)) we shall
get all necessary instruments to develop differential calculus on spaces J1.E:n/ and,
more generally, on diffieties (see below). The informal interpretation of the filtered
algebra F1 as the smooth function algebra on the “cofiltered manifold” J1.E:n/
helps to keep the analogy with the calculus on smooth manifolds under due control.
In coordinates an element of F1 looks as a function of a finite number of variables
xi and uj	 . This reflects the fact that any “smooth function” on J1.E:n/ is, by defi-
nition, a smooth function on a certain J k.E:n/; k <1, pulled back onto J1.E:n/
via �1;k . Therefore, the filtered structure of F1 is essential and differential opera-
tors � W F1 �! F1 (in the sense of definition 5.1) must respect it. This means that
�.Fk/ 	 FkCs for some s. In particular, a vector field on J1.E:n/ is defined as
a derivation of F1, which respects, in this sense, the filtration. In coordinates such
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a vector field looks as an infinite series

X D
X
i

˛i
@

@xi
C
X
j;	

ˇj	
@

@u
j
	

; �i ;  
j
	 2 F1: (6.17)

The F1-module of vector fields on J1.E:n/ will be denoted by D.J1.E:n//.

5.4 The algebra ~ in coordinates Since C1 is an F1-module generated by
the vector fields Di (Proposition 4.1, (5)), it is convenient to represent a vector field
X 2 D.J1.E:n// in the form

X D
X
i

 iDi C
X
j;	

'j	
@

@u
j
	

;  i ; '
j
	 2 F1 (6.18)

where the first summation, which belongs to C1, is the horizontal part of X , while
the second one is its vertical part. This splitting of a vector field into horizontal and
vertical parts is unique but depends on the choice of coordinates. Obviously, the coset
ŒX mod C1� is uniquely characterized by the vertical part of X .

Below we use the notationD	
defD D

	1

1 �� � ��D	n
n for a multiindex � D .�1; : : : ; �n/.

Proposition 5.1.

1. ~ is an F1-module and @=@u1; : : : ; @=@um is its local basis in the chartU with
coordinates .: : : ; xi ; : : : ; u

j
	 ; : : : /;

2. the correspondence

.Fm1/U 3 ' D .'1; : : : ; 'm/, �' D
X

D	 .'i /
@

@ui	
2 ~U

is an isomorphism of F1-modules localized to the chart U ;

3. the Lie algebra structure f�; �g in ~U is given by the formula

f'; g D �'. / �� .'/; Œ�' ;� � D �f'; gI

4. .f;�'/ 7! �f ' is the .F1/U -module product in ~U .

The vector fields �'s locally representing elements of the module ~ are called
evolutionary derivations, and ' is called the generating function of �' . The bracket
f�; �g introduced for the first time in [58] (see also [61, 29]) is a generalization of both
the Poisson and the contact brackets. Indeed, these are particular cases where m D 1
and the generating functions depend only on the xi s and on the first derivatives and in
the contact case also of u. If Y is a vector field onE (m > 1) or a contact vector field
on J 1.E; n/ (m D 1) and Y.1/ is its lift to J1.E; n/, then Y.1/ 2 DC.J1.E; n//
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and the composition Y 7! Y.1/ 7! ŒY.1/ mod CD.J1.E; n//� 2 ~ is injective.
Therefore, infinitesimal point and contact transformations are naturally included in
~. Their generating functions depends only on x; u and first derivatives, and we see
that the Lie algebra ~ is much larger than the algebras of infinitesimal point and
contact transformations. Hence the passage to infinite jets is in fairly good accor-
dance with the “Erlangen philosophy”. But in order to benefit from this richness of
infinite order contact transformations we must bring PDEs in the context of infinite
order contact geometry. But in that case we cannot mimic Definition 3.2, since, in
sharp contrast with finite order jet spaces, an arbitrary submanifold of S 	 J1.E; n/
cannot be interpreted as a PDE. Indeed, the restriction of C1 to S is, generally, not
n-dimensional, while we need n-dimensional integral submanifolds to define the so-
lutions. So, we must concentrate on those submanifolds S to which C1 is tangent,
i.e., such that C1

�
	 T�S; 8	 2 S . These are obtained by means of the prolongation

procedure.

5.5 Prolongations of PDEs and diffieties Let E 	 J k.E; n/ be a PDE in the
sense of Definition 3.2 and N 	 E be its solution (Definition 4.3). Then, obviously,
T�N 	 E� ; 8	 2 N . Therefore, if E admits a solution passing through a point 	 2 E ,
then there is at least one R-plane at 	 , which is tangent to E . Since any R-plane is
of the form R# ; �kC1;k.#/ D 	 , the variety of all R-planes tangent to E is identified
with the submanifold (probably, with singularities)

E.1/ defD f# 2 J kC1.E; n/ jR# is tangent to Eg 	 J kC1.E; n/:

Therefore, tautologically, a solution of E passes only through points of�kC1;k.E.1// 	
E . In other words, a solution of E is automatically a solution of �kC1;k.E.1//. Hence
by substituting �kC1;k.E.1// for E we eliminate “parasitic” points. Moreover, by con-
struction, if L.k/ 	 E , then L.kC1/ 	 E.1/ and vice versa. Hence E and E.1/ have
common “usual” solutions but E.1/ is without “parasitic” points of E . By continuing
this process of elimination of “parasitic” points we inductively construct successive

prolongations E.r/ defD �E.r�1/
�
.1/

of E . In this way we get an infinite series of equa-
tions, which have common “usual” solutions:

E D E.0/
�kC1;k � E.1/

�kC2;kC1 � E.2/
�kC3;kC2 � : : : ; with E.r/ 	 J kCr : (6.19)

The inverse limit E1 of the sequence (6.19) called the infinite prolongation of E is
a submanifold of J1.E; n/ (in the same sense as the latter) and one of the results of
the formal theory of PDEs tells:

Proposition 5.2. (see [23, 50, 44, 30]) If the distribution C1 is tangent to a subman-
ifold S 	 J1.E; n/, then S D E1 for a PDE E .
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In coordinates, prolongations of E are described as follows

E.2/ D
8<
: E.1/ D

�
E D fFs.x; u; : : : ; uj	 ; : : :/ D 0; s D 1; : : : ; lg

DiFs D 0
�

DiDjFs D 0

9=
;

: : :
+

E1 D fD	Fs D 0;8s; �g

(6.20)

Remark 5.1. E1 may be empty.

The algebra F1.E/ defD F jE1
plays the role of the smooth function algebra on

E1. It is a filtered algebra

F0.E/ 	 � � � 	 Fs.E/ 	 � � �F1.E/ with Fs.E/ D Im.C1.E.s//
��

1;kCs�! F1.E//:
(6.21)

As in the case of infinite jets differential calculus on E1 is understood as differential
calculus over the filtered algebra F1.E/.

Thus we have constructed the central object of the general theory of PDEs.

Definition 5.2. The pair .E1; C1
E / with C1

E
defD C1 jE1

is called the diffiety associ-
ated with E .

The distribution C1
E is n-dimensional, since C1 is tangent to E1. The projection

�1;k establishes a one-to-one correspondence between integral submanifolds of C1
E

and those of Ck jE , which are transversal to fibers of �k;k�1. Thus, n-dimensional
integral submanifolds of C1

E are identified with non-singular solutions of E .
The following interpretation, even though absolutely informal, is a very good

guide in the task of deciphering the native language that NPDEs speak and, there-
fore, in terms of which they can be only understood adequately:

The diffiety associated with a PDE E (in the standard sense of this term)
is the space of all solutions of E .

Remark 5.2. The reader may have already observed that nontrivial generalized solu-
tions of E cannot be interpreted as integral submanifolds of C1

E and hence the diffiety
.E ; C1

E / is not the “space of all solutions of E”. However, this is not a conceptual
defect, since this diffiety can be suitably completed.

As a rule, diffieties are infinite-dimensional. Diffieties of finite dimension are
foliations, probably, with singularities. Diffieties associated with determined and
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overdetermined systems of ordinary differential equations (ODEs) are 1-dimensional
foliations on finite-dimensional manifolds. On the contrary, diffieties associated with
underdetermined systems of ODEs are infinite-dimensional. A good part of control
theory is naturally interpreted as the structural theory of this kind of diffieties (see
[13]).

5.6 Higher infinitesimal symmetries of PDEs Now having in hands the
concept of diffiety we can extend the classical symmetry theory described above by
including in it the new already mentioned “experimental data” that come from the the-
ory of integrable systems. To this end it is sufficient to apply the same approach we
have used to understand what are infinite-order infinitesimal contact transformations.

As before, by abusing language, we shall denote the F1.E/-module of vector
fields on E1 belonging to C1

E by the same symbol C1
E . Since the distribution C1 is

tangent to E1, vector fieldsDi s are also tangent to E1. For this reason restrictions of
the Di to E1 are well-defined, Denote them by NDi . The Lie algebra of infinitesimal
transformations preserving the distribution C1

E is

DC.E1/
defD fX 2 D.E1/ j ŒX; Y � 2 C1

E ; 8Y 2 C1
E g: (6.22)

Now the Lie algebra of infinitesimal higher symmetries of a PDE E is defined as

Sym E D DC.E1/
C1
E

(6.23)

This definition merits some comments. First, we use the adjective “higher” to stress
the fact that generating functions of elements of the algebra Sym E may depend, con-
trary to the classical symmetries, on arbitrary order derivatives. Next, in conformity
with the above interpretation of the diffiety .E ; C1

E /, the informal interpretation of
Definition (6.23) is :

Elements of the Lie algebra Sym E are vector fields on the “space of all
solutions of E”.

The importance of this interpretation is that it forces the question:

What are tensors, differential operators, PDEs, etc. on the “space of all
solutions of E”.

Later we shall give some examples and indications on how to define and use this kind
of objects. These objects form the thesaurus of secondary calculus, which is a natural
language of the general theory of PDEs (see [66, 27, 29]).

Finally, note that higher symmetries are not genuine vector fields as in the classical
theory but just some cosets of them modulo C1

E . For this reason their action on
functions on E1 is not even defined. This at first glance discouraging fact leads to
the bifurcation point: either to give up or to understand what are functions on the
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“space of solutions of E”. Since, as we shall see, Definition (6.23), works well, the
first alternative should be discarded, while the second one will lead us to discover
differential forms on the “space of solutions of E”.

5.7 Computation of higher symmetries Though elements of ~ are cosets of
vector fields modulo E1 we can say that � D ŒX� 2 ~ is tangent to E1 if the vector
field X is tangent to E1. Since C1 is tangent to E1, this definition is correct. If E1
is locally given by equations (6.19) and � by the evolutionary derivation �' , then
� is tangent to E1 if and only if �'.D	 .Fs// jE1

D 0; 8�; s. Since �' and the
Di commute these conditions are equivalent to �'.Fs/ jE1

D 0; 8s, or, in short,
to �'.F / jE1

D 0 with F D .F1; : : : ; F`/. The bidifferential operator .'; F / 7!
�'.F / may be rewritten in the form �'.F / D `F .'/ with

`F D

0
BB@
P
	
@F1

@u1
�

D	 : : :
P
	
@F1

@um
�
D	

:::
:::P

	
@Fl

@u1
�

D	 : : :
P
	
@Fl

@um
�
D	

1
CCA (6.24)

and `F is called the universal linearization operator. Being tangent to E1 the fields
Di can be restricted to E1. It follows from (6.24) that `F can also be restricted
to E1. This restriction will be denoted by `F . Thus, by definition, `F .G jE1

/ D
`F .G/ jE1

; 8G. In these terms the condition of tangency of � to E1 reads

`F . N'/ D 0; N' D ' jE1
H) Sym E D ker `F (6.25)

Hence the problem of the computation of the infinitesimal symmetries of a PDE E is
reduced to the resolution of Equation (6.25). This equation is not a usual PDE, since
it is imposed on functions depending on an unlimited number of variables. Neverthe-
less, it is not infrequent that it can be exactly solved. For instance, this method allows
not only to easily rediscover “classical” hierarchies associated with well known inte-
grable systems but also to find various new ones (see [29, 25]).

The interpretation of higher symmetries as vector fields on the “space of solutions
of E” leads to the question : What are the trajectories of this field? The equation of
trajectories of � is very natural:

ut D '.x; u; : : : ; ui	 ; : : :/ with ' D .'1; : : : ; 'm/: (6.26)

Equation (6.26) is the exact analogue of the classical equations

xi D ai .x/; i D 1; : : : ; m; x D .x1; : : : ; xm/; (6.27)

which describe trajectories of the vector field X DPm
iD1 ai@=@xi . An essential dif-

ference between Equations (6.26) and (6.27) is that the initial data uniquely determine
solutions of (6.27), while it is not longer so for (6.26). Indeed, the uniqueness for the
partial evolution equation is guaranteed by some addition to the initial conditions, for
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instance, the boundary ones. For this reason a “vector field” � 2 ~ does not generate
a flow on the “space of solutions of E .”

A very important consequence of this fact is that in this new context the classical
relation between Lie algebras and Lie groups breaks down. Consequently, absolute
priority should be given to infinitesimal symmetries, not to the finite ones.

One of the most popular applications of symmetry theory takes an especially sim-
ple form if expressed in terms of generating functions. Namely, imagine for a while
that the flow generated by � 2 ~ exists. Then, according to (6.26), “stable points” of
this flow are solutions of the equation ' D 0. In other words, these “stable points”
are solutions of the last equation. If '1; : : : ; 'l are generating functions of some
symmetries of E , then the solutions of the system8̂̂

<̂
ˆ̂̂:
F D 0
'1 D 0
:::

'l D 0
(6.28)

represent those solutions of E that are stable in the above sense with respect to the
“flows” generated by '1; : : : ; 'l . The system (6.28) is well overdetermined and for
this reason can be exactly solved in many cases. For instance, famous multi-soliton
solutions of the KdV equation are solutions of this kind.

5.8 What are partial differential equations? The fact that we have built
a self-consistent and well working theory of symmetries for PDEs based on diffieties
gives a considerable reason to recognize diffieties as objects of the category of PDEs.
Another argument supporting this idea is as follows.

Take any PDE, say,

uxxu
2
tt C u2tx C .u2x � ut /u D 0: (6.29)

This is a hypersurface E 	 J 2.E; 2/; dimE D 3. The equivalent system of first
order PDEs is 8<

:
ux D v
ut D w
vxw

2
t C vtwx C .v2 �w/u D 0:

(6.30)

This is a submanifold E 0 	 J 1.E 0; 2/; dimE 0 D 5; of codimension 3. E and E 0 live
in different jet spaces and have different dimensions. For this reason their classical
symmetries cannot even be compared. On the other hand, associated with E and
E 0 diffieties are naturally identified and hence have the same (higher) symmetries.
Therefore, this fact may be interpreted by saying that (6.29) and (6.30) are different
descriptions of the same object, namely, of the associated diffiety.

Another example illustrating priority of diffieties is the factorization problem.
Namely, if G is a Lie algebra of classical symmetries of an equation E , then the ques-
tion is: Can E be factorized by the action of G and what is the resulting “quotient
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equation” ? In terms of diffieties the answer is almost obvious : this is the equation
E 0 such that E1nG D E 01. On the contrary, it is not very clear how to answer this
question in terms of the usual approach.

Example 5.1. Let G be the group of translations of the Euclidean plane. Obviously,
these translations are symmetries of the Laplace equation uxx C uyy D 0. Then the
corresponding quotient equation is again the Laplace equation.

There are many other examples manifesting that

A PDE as a mathematical object is a diffiety, while what is usually
called a PDE is just one of many possible “identity cards” of it.

It should be stressed that the diffiety associated with a system of PDEs (in the usual
sense of this word) is the exact analogue of the algebraic variety associated to a system
of algebraic equations. Indeed, if a system of algebraic equations is f1 D 0; : : : ; fr D
0, then the ideal defining the corresponding variety is algebraically generated by the
polynomials fi . In the case of a PDE E D fFi D 0g the ideal defining E1 is
algebraically generated not only by the functions Fi but also by all their differential
consequencesD	 .Fi/ (see (6.20)). Viewed from this side algebraic geometry is seen
as the zero-dimensional case of the general theory of PDEs.

6 On the internal structure of diffieties

On the surface, a diffiety O D .E ; C1
E / looks as a simple enough object like a folia-

tion. All foliations of a given finite dimension and codimension are locally equivalent.
On the contrary, the situation drastically changes when the codimension becomes in-
finite. Therefore, the problem of how to extract all the information on the equation
E , which is encoded in the “poor” Frobenius distribution C1

E , naturally arises and be-
comes central. To gain a first insight into the problem we consider as a simple model
a Frobenius distribution D, or, equivalently, a foliation, on a finite-dimensional man-
ifold M .

6.1 The normal complex of a Frobenius distribution Let D be an r-
dimensional Frobenius distribution on a manifold M . The quotient C1.M/-module
N D D.M/=D is canonically isomorphic to �.�/ where � is the normal bundle to
D, i.e., the bundle whose fiber over x 2 M is TxM=Dx . Put OY D ŒY mod D� 2 N
for Y 2 D.M/ and

rX . OY / D 1ŒX; Y � for X 2 D:
It is easy to see that rfX D f rX ; rX .f OY / D X.f / OY C f rX . OY / if f 2 C1.M/
and ŒrX ;rX 0 � D rŒX;X 0
. These formulas tell that the correspondencer W X 7! rX
is a flat D-connection. This means that this construction can be restricted to a leaf L
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of the foliation associated with D and this restriction is a flat connection rL in the
bundle � normal to D restricted to L. Recall that with a flat connection is associated
a de Rham-like complex i (see [11]), which for rL is

0 �! NL
rL
�! ƒ1.L/˝C1.L/ NL

rL
�! � � � rL

�! ƒr .L/˝C1.L/ NL �! 0 (6.31)

where the covariant differential is abusively denoted also by rL and NL D �.�jL/.
This complex is, in fact, the restriction to L of the complex.

0 �! N r�! ƒ1D ˝C1.M/ N r�! � � � r�! ƒrD ˝C1.M/ N �! 0 (6.32)

where ƒiD D ƒi .M/=Dƒi .M/ with

Dƒi .M/ D f! 2 ƒi .M/ j!.X1; : : : ; Xi / D 0; 8X1; : : : ; Xi 2 Dg:
The terms of the complex (6.32) are N -valued differential forms on D, i.e.,
�.X1; : : : ; Xs/ 2 N if X1; : : : ; Xs 2 D. The covariant differential r is defined
as

r.�/.X1; : : : ; XsC1/ DPsC1
iD1.�1/i�1rXi

.�.X1; : : : ;cXi ; : : : ; XsC1//CP
i<j .�1/iCj�.ŒXi ; Xj �; X1 : : : ; Xi ; : : : ; Xj ; : : : ; XsC1/:

Pictorially, this situation may be seen as a “foliation” of the complex (6.32) by
complexes (6.31). The i-th cohomology of complexes (6.31) and (6.32) will be de-
noted by H i .rL/ and H i .r/, respectively. We also have a natural restriction map
H i .r/! H i .rL/ in cohomology.

Formally, the above construction remains valid for any Frobenius distribution and
hence can be applied to diffieties. In order to duly specify the complex (6.32) to this
particular case we need a new construction from differential calculus over commuta-
tive algebras.

6.2 Modules of jets Let A be an unitary algebra and let P;Q be A-modules.
Denote by Diffk.P;Q/ the totality of DOs of order � k considered as a left A-
module, i.e., .a;�/ 7! a�; a 2 A; � 2 Diffk.P;Q/. Consider a subcategory K
of the category of A-modules such that Diffk.P;Q/ 2 ObK if P;Q 2 ObK. For
a fixed P we have the functor Q 7! Diffk.P;Q/. We say that a pair composed of
an A-module J k

K.P / and a k-th order DO jk D jP;Kk
W P ! J k

K.P / represents this
functor in the category K if the map HomA.J k

K.P /;Q/ 3 h 7! hıjk 2 Diffk.P;Q/
is an isomorphism of A-modules. Under some weak condition on K, which we skip,
the representing object .J k

K.P /; jk/ exists and is unique up to isomorphism. J k
K.P /

is called the module of k-th order jets of P (in K). Thus for a DO � 2 Diffk.P;Q/
there is a unique A-module homomorphism h� W J k

K.P / ! Q such that � D
h� ı jk .
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As an A-module, J k
K.P / is generated by elements jk.p/; p 2 P . A natural

transformation of functors Diffl .P; �/ 7! Diffk.P; �/; l � k; induces a homomor-
phism �k;l D �P

k;l
W J k

K.P / ! J l
K.P / of A-modules such that jl D �k;l ı jk .

This allows to define the inverse limit of pairs .J k
K.P /; jk/ called the module of in-

finite jets of P and denoted by .J 1
K .P /; j1 D jP;K1 /. Natural projections �1;k W

J 1
K .P /! J k

K.P / come from the definition. These maps supply J 1
K .P / with a de-

creasing filtration

J 1
K .P / 
 ker.�1;0/ 
 ker.�1;1/ 
 � � � 
 ker.�1;k/ 
 � � � (6.33)

Finally, we stress that J k
K.P / and all related constructions essentially depend on K.

Any operator � 2 Diffr.P;Q/ induces a homomorphism

hr� W J kCr
K .P /! J r

K.Q/; r � 0:
Namely, the composition P

��! Q
jr�! J r

K.Q// is a DO of order � k C r . Thus, it
can be presented in the form hjr ı� ı jkCr , and we put

hr�
defD hjr ı� W J kCr

K .P /! J r
K.Q/: (6.34)

The inverse limit of the homomorphisms hr� defines a homomorphism of filtered
modules

h1
� W J 1

K .P /! J 1
K .Q/

which shifts filtration (6.33) by �k.
If Q D J k

K.P / and � D jk , then the above construction gives natural inclusions

�k;r
defD hrjr ıjk

W J kCr
K .P / ,! J r

K.J k
K.P //:

The inverse limit of these inclusions is

�1 W J 1
K .P / ,! J 1

K .J 1
K .P //:

Now we shall describe constructively the above conceptually defined modules of
jets for geometrical modules over the algebraA D C1.M/. Recall that anA-module
P is geometrical if all its elements p such that p 2 z �P; 8z 2M; are equal to zero
(see [42]). Here z D ff 2 C1.M/ j f .z/ D 0g. The category of geometrical
A-modules will be denoted by G and we shall write simply J k.P / for J k

G .P /.
Put J k D J k.A/ and note that J k is a unitary algebra with the product

.f1jk.g1// � .f2jk.g2// D f1f2jk.g1g2/; fi ; gi 2 A. In particular, J k is a bi-
module. Namely, left (standard) and right multiplications by f 2 A are defined
as .f; 	/ 7! f 	 and .f; 	/ 7! 	jk.f /, respectively. J k supplied with the right
A-module structure will be denoted by J k

> .
We have (see [42]).

Proposition 6.1.
1. Let ˛k be the vector bundle whose fiber over z 2 M is Jz.M/ (see Section

3.1). Then J k D �.˛k/.
2. J k.P / D J k

> ˝A P .
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6.3 Jet-Spencer complexes The k-th jet-Spencer complex of P denoted by
Sk.P / is defined as

0! J k.P /
Sk�! J k�1.P /˝A ƒ1.M/

Sk�! � � � Sk�! J k�n.P /˝A ƒn.M/! 0
(6.35)

with Sk.jk�s.p/˝ !/ D jk�s�1.p/˝ d!; ! 2 ƒs.M/. Here n D dimM and we
assume that J s.P / D 0 if s < 0.

Differentials of Spencer complexes are 1-st order DOs. For k � l , the homomor-
phisms

�k�s;l�s ˝ id jƒs.M/ W J k�s.P /˝A ƒs.M/ �! J l�s.P /˝A ƒs.M/;

s D 0; 1; : : : ; n;
define a cochain map �k;l W Sk.P / �! Sl.P /. In particular, we have the following
sequence of Spencer complexes

0 S0.P /
	1;0 � S1.P /

	2;1 � � � � 	k;k�1 � Sk.P /
	kC1;k � : : : (6.36)

The infinite jet-Spencer complex S1.P / is defined as the inverse limit of (6.36) to-
gether with natural cochain maps �1;k . As in the case of jets the complex S1.P / is
filtered by subcomplexes ker.�1;k/.

An operator � 2 Diffr.P;Q/ induces a cochain map of Spencer complexes

�k� W Sk.P / �! Sk�r.Q/; (6.37)

which acts on the s-th term of Sk.P / as

hk�s
� ˝ id jƒs.M/ W J k�s.P /˝A ƒs.M/ �! J k�s�r.Q/˝A ƒs.M/ (6.38)

(see (6.34)).
Conceptually, the k-th jet-Spencer complex is a acyclic resolvent for the universal

k-order differential operator jk . Namely, we have

Proposition 6.2. If P D �.�/ with � being a vector bundle overM , then

1. Sk.P / is acyclic in positive dimensions, H i .Sk/ D 0 if i > 0.

2. H 0.Sk/ D P and 0-cocycles are jk.p/ 2 J k.P /; p 2 P .

Jet-Spencer complexes are natural, since they can be defined over arbitrary uni-
tary (graded) algebras (see [59]). In other words, they are compatible with homo-
morphisms of these algebras. In particular, they restrict to submanifolds. For our
purposes, we need to describe this procedure.

Let N 	 M be a submanifold. In the notation of Proposition 6.2 we put PN D
�.�jN / and jN

k
W PN ! J k.PN / to distinguish this jet-operator on N from jk W
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P ! J k.P /. Since C1.N /-modules can also be considered as C1.M/-modules,
the composition �

P
restriction�! PN

jN
k�! J k.PN /

is a k-th order DO over C1.M/. The homomorphism of C1.M/-modules h� W
J k.P / ! J k.PN / associated with � is, by definition, the restriction operator.
Now, by tensoring this restriction operator with the well-known restriction operator
for differential forms we get the restriction operator for terms of Sk.P /. Finally, by
passing to the inverse limit we get the restriction operator for S1.P /.

6.4 Foliation of Spencer complexes by a Frobenius distribution Take
the notation of Subsection 6.1 and denote by Dƒi .M/ (resp., DJ k.P // the totality
of all differential forms (resp., jets) whose restrictions to all leaves of D are trivial.
Similarly, DSk.P / stands for the maximal subcomplex of Sk.P / such that its restric-
tions to leaves of D are trivial. Horizontal (with respect to D) differential forms and
jets are elements of the quotient modules

NƒiD.M/
defD ƒi .M/=Dƒi .M/; NJ k.P /

defD J k.P /=DJ k.P /:

Similarly, the horizontal jet-Spencer complex is

NSk.P / defD Sk.P /=DSk.P /:
Restrictions of all the above horizontal objects to leaves of D are naturally defined.
Conversely, a horizontal differential form (resp., jet-Spencer complex) may be viewed
as a family of differential forms (resp., jet-Spencer complex) defined on single leaves.
In other words, if L runs through all leaves of D, then theƒi .L/ foliate NƒiD.M/, and
similarly for jets and Spencer complexes.

Accordingly, the exterior differential d as well as the Spencer differential Sk fac-
torize to Nƒ�.M/ and NSk.P /, since Dƒi .M/ and DSk.P / are stable with respect to
d and Sk , respectively. These quotient differentials will be denoted by Nd and NSk ,
respectively. In this way we get the horizontal de Rham and Spencer complexes and
hence horizontal de Rham and Spencer cohomology.

Remark 6.1. For simplicity, in the above definition of horizontal objects we have
used leaves of D. It fact, with a longer formal procedure this can be done explicitly
in terms of the distribution D.

6.5 The normal complex of a diffiety and more symmetries First, we
shall describe the normal complex for J1.E; n/. Denote the normal bundle to Ck by

�k; 1 � k � 1 and put ~k
defD �.�k/ D D.J k.E; n//=Ck, ~l;k

defD �.��
k;l
.�l// D

��
k;l
.~l/; l � k.
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Proposition 6.3.

1. ~ D ~1;1; ~k;1 D NJ k�1.~/ and ~1 D NJ 1.~/;
2. the normal to C1 complex is isomorphic to NS1.~/;
3. H 0. NS1/ D ~; H i . NS1/ D 0; i ¤ 0.

Assertion (3) in this proposition is a pro-finite consequence of Proposition 6.2.
The following important interpretation is a consequence of this and the second asser-
tions of Proposition 6.3:

~ is the zero-th cohomology space of the complex normal to the infinite
contact structure C1.

Now we can describe the normal complex to C1
E by restricting, in a sense, Propo-

sition 6.3 to E1. First, to this end, we need a conceptually satisfactory definition of
the universal linearization operator (6.24), which was defined coordinate-wisely in
Subsection 5.7.

The equation E 	 J k.E; n/ may be presented in a coordinate-free form as ˆ D
0; ˆ 2 �.�/with � being a suitable vector bundle over J k.E; n/. IfP D �.��

1;k
.�//

and ˆ1 D ��
1;k

.ˆ/, then E1 D f Nj1.ˆ1/ D 0g. Additionally, assume that P is
supplied with a connection r. If Y 2 C1, then, as it is easy to see, rY .ˆ/jE1 D 0.
For this reason the following definition is reasonable.

`E.�/
defD rX .ˆ/jE1 with � D ŒX mod C1

E �: (6.39)

The operator `E W ~ ! P does not depend on the choices of ˆ and r. It defines the
cochain map of jet-Spencer complexes

�1
`E W S1.~/ �! S1.P / (6.40)

(see (6.37)).

Proposition 6.4. Let NE be the normal to the distribution C1
E complex on E1. Then

1. NE is isomorphic to the complex ker�1
`E .

2. The cohomologyH i .NE/ of the complex NE is trivial if i > n.

3. Sym E D H 0.NE/ D ker `E .

Assertions (2) and (3) of this proposition are consequences of the first one, which
allows to compute the cohomology of NE . Moreover, assertion (3) is one of many
other arguments that motivate the following definition.

Definition 6.1. The Lie algebra of (higher) infinitesimal symmetries of a PDE E is
the cohomology of the normal complex NE .
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Accordingly, denote by Symi E the i -th cohomology space of NE . Thus, the
whole Lie algebra of infinitesimal symmetries of E is graded :

Sym� E D
nX
iD0

Symi E ; Symi E D H i .NE/

In particular, Sym E D Sym0 E (see Subsection 5.6).

Remark 6.2. The description of the Lie product in Sym� E is not immediate and
requires some new instruments of differential calculus over commutative algebras.
For this reason we shall skip it.

The following proposition illustrates what the algebra Sym� E looks like.

Proposition 6.5. If E is not an overdetermined system of PDEs, then

Sym0 E D ker `E ; Sym1 E D coker`E and Symi E D 0 if i ¤ 0; 1:

In this connection we note that a great majority of the PDEs of current interest
in geometry, physics and mechanics are not overdetermined. As an exception we
mention the system of Yang–Mills equations, which is sightly overdetermined, and
for these equations Sym2 E ¤ 0.

To conclude this section we would like to emphasize the role of the structure of
differential calculus over commutative algebras in the above discussion. While we
have used the “experimental data” coming from the theory of integrable systems to
discover “by hands” the conceptually simplest part of infinitesimal symmetries of
PDEs, i.e., the Lie algebra Sym E , a familiarity with the structures of differential cal-
culus over commutative algebras is indispensable to discover that it is just the zeroth
component of the full symmetry algebra Sym� E , which in its turn is the cohomology
of a certain complex.

7 Nonlocal symmetries and once again: what are PDEs?

In the previous section we have constructed a self-consistent symmetry theory, which,
from one side, resolves shortcomings of the classical theory discussed in Sections 2–5
and, from another side, incorporates “experimental data” that emerged in the theory
of integrable systems. However, one important element of this theory was not taken
into account. Namely, we have in mind nonlocal symmetries. Roughly speaking,
these are symmetries whose generating function depends on variables of the form
D�1
i .u/. Fortunately, these unusual symmetries can be tamed by introducing only

one new notion we are going to describe.
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7.1 Coverings of a diffiety Schematically, a diffiety O is a pro-finite man-
ifold M supplied with a finite-dimensional pro-finite Frobenius distribution D D
DO :O D .M;D/. We omit technical details that these data must satisfy.

Recall that a pro-finite manifold is the inverse limit of a sequence of smooth maps

M0

�1 � M1

�2 � � � � �k � Mk

�kC1 � : : : (M (6.41)

A pro-finite distribution on M is the inverse limit via the i of the distributions Di
on Mi . The associated sequence of homomorphisms of smooth function algebras

C1.M0/
��

1�! C1.M1/
��

2�! � � � �
�
k�! C1.Mk/

��
kC1�! : : : ) FM (6.42)

with FM being the direct limit of homomorphisms �
k

is filtered by subalgebras

Fk
M

defD �
1;k

C1.Mk/ where 1;k W M ! Mk is a natural projection. Differ-
ential calculus on M is interpreted as the calculus over the filtered algebra FM (see
Subsection 5.3). The dimension of D is interpreted as the “number of independent
variables.”

A morphism F W O ! O0 between a diffiety O D .M;D/ and a diffiety
O0 D .M0;D0/ is, abusing the notation, a map F WM ! M0 such that F �.FM0/ 	
FM; F

� is compatible with filtrations and d�F.D� / 	 D0
F .�/

; 8	 2M.

Definition 7.1. A surjective morphism F W O ! O0 of diffieties is called a covering
if dimD D dimD0 and d�F isomorphically sends D� to D0

F .�/
; 8	 2M.

This terminology emphasizes the analogy with the standard notion of a cover-
ing in the category of manifolds. Namely, fibers of a covering are zero-dimensional
diffieties in the sense that the their structure distributions D are zero-dimensional.
If these fibers are finite-dimensional in the usual sense, then the covering is called
finite-dimensional.

A covering F W E1 ! E 01 may be interpreted as a (nonlinear) DO, which sends
solutions of E to solutions of E 0. More exactly, it associates with a solution of E 0
a families of solutions of E . For instance, the famous Cole–Hopf substitution v D
2ux=u that sends solutions of the heat equation E D fut D uxxg to solutions of the
Burgers equation E 0 D fvt D vxx C vvxg comes from a 1-dimensional covering of
E 0. Equivalently, the passage from a PDE to a covering equation is the inversion of
a .nonlinear/ DO on solutions of this PDE. For instance, by inverting the operator
v 7! 2vx=v on solutions of the Burgers equation one gets the heat equation.

7.2 Where coverings appear The notion of a covering of a diffiety was in-
troduced by the author (see [62]) as a common basis for various constructions that
appeared in PDEs. Below we list and briefly discuss some of them.



6 What are symmetries of PDEs? 177

1) In the language of diffieties the passage from Lagrange’s description of a con-
tinuum media to that of Euler is interpreted as a covering. This interpretation
allows to apply instruments of secondary calculus to this situation and, as a re-
sult, to derive from this fact some important consequences for mechanics of
continua.

2) Factorization of PDEs. If G is a symmetry group of a diffiety O, then under
some natural conditions the quotient diffiety OnG is well-defined and O !
OnG is a covering. In particular, if O D E1, then OnG D E 01. In such
a case E 0 is the quotient equation of E by G. A remarkable fact is that the
group G in this construction may be an “infinite-dimensional” Lie group like
the group Diffeo.M/ of diffeomorphisms of a manifold M , or the group of
contact transformations, etc.

3) Differential invariants and characteristic classes. Let � W E ! M be a fiber
bundle of geometrical structures of a type S on M (see [1]). Then CharS D
J1.�/nDiffeo.M/ is the characteristic diffiety for S-structures. This diffiety
is with singularities, which are in turn diffieties with a smaller numbers of
independent variables. Functions on CharS are scalar differential invariants
of S- structures, their horizontal de Rham cohomology is composed of their
characteristic classes, etc.

Similarly one can define differential invariants and characteristic classes for so-
lutions of natural PDEs, i.e., those that are invariant with respect to the group
Diffeo.M/ or some more specific subgroups of this group. For instance, Ein-
stein equations and many other equations of mathematical physics are natural.
Gel’fand–Fucks characteristic classes are quantities of this kind. The reader
will find more details and examples in [65, 39, 53].

4) Bäcklund transformations. The notion of covering allows to rigorously define
Bäcklund transformations. Namely, the diagram

E1
F 0

����
��
��
��

F 00

���
��

��
��

�

E 01 E 00

1

where F 0 and F 00 are coverings presents the Bäcklund transformation F 00 ı
.F 0/�1 from E 0 to E 00 and its inverse F 0 ı .F 00/�1. The importance of this defi-
nition lies in the fact that it suggests an efficient and regular method for finding
Bäcklund transformations for a given PDE (see [28, 29, 22]). Previously this
was a kind of handcraft art. Moreover, it turned out to be possible to prove for
the first time nonexistence of Bäcklund transformations connecting two given
equations (see [21]). This seems to be an impossible task by using only the
standard techniques of the theory of integrable systems.
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5) Poisson structures and the Darboux lemma in field theory. The efficiency
and elegance of the Hamiltonian approach to the mechanics of systems with
a finite number of degrees of freedom motivates the search for its extension to
the mechanics of continua and field theory. Obviously, this presupposes a due
formalization of the idea of a Poisson structure in the corresponding infinite-
dimensional context. Over the past 70–80 years various concrete constructions
of the Poisson bracket in field theory were proposed, mainly, by physicists. But
the first attempts to build a systematic general theory can be traced back only
to the late 1970s. Here we mention B. A. Kuperschmidt’s paper [31] where
he constructs an analogue of the Poisson structure on the cotangent bundle on
infinite jets, and the paper by I. M. Gel’fand and I. Dorfman [16] in the context
of “formal differential geometry”. A general definition of a Poisson structure
on infinite jets was proposed by the author in [57] but its extension to general
diffieties appeared to be a not very trivial task.

More precisely, while the necessary definition of multivectors in secondary cal-
culus, sometimes also called variational multivectors, is a natural generalization of
Definition 6.1, some technical aspects of the related Schouten bracket mechanism are
to be still elaborated. See [66, 26, 18] for further results.

On the other hand, in the context of integrable systems numerous concrete Pois-
son structures were revealed. Among them the bi-hamiltonian ones deserve a spe-
cial mention (see [38]). Therefore, the question of their classification arises. In the
finite-dimensional case the famous Darboux lemma tells that symplectic manifolds
or, equivalently, nondegenerate Poisson structures of the same dimension are locally
equivalent. “What is its analogue in field theory?” is a good question, which, at first
glance, seems to be out of place as many known examples show. Nevertheless, by
substituting “coverings” for “diffeomorphisms” in the formulation of this lemma and
observing that these two notions are locally identical for finite-dimensional manifolds
we get some satisfactory results. Namely, all Poisson structures explicitly described
up to now on infinite jets are obtained from a few models by passing to suitable cov-
erings. See [3] for more details.

7.3 Nonlocal symmetries The first idea about nonlocal symmetries takes its ori-
gin at a seemingly technical fact. It was observed that the PDEs forming the KdV
hierarchy are obtained from the original KdV equation E D fut D uux CuCuxxxg
by applying the so-called recursion operator. This operator

R D D2
x C

2

3
uC 1

3
uxD

�1
x

is not defined rigorously. By applying it to generating functions of symmetries of E
one gets new ones that may depend on D�1

x u D R
udx. A due rigor to this formal

trick can be given by passing to a 1-dimensional covering E 01 ! E1 by adding to the
standard coordinates on E1 a new onew such thatDxw D u andDtw D uxxC 1

2
u2.

In this setting the above symmetries of E depending on
R
dx, i.e., nonlocal ones,
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become symmetries of E 01 in the sense of Definition 6.1, i.e., local ones. This and
other similar arguments motivate the following definition.

Definition 7.2. A nonlocal symmetry .finite or infinitesimal/ of an equation E is
a local symmetry of a diffiety O, which covers E1. If � W O ! E1 is a covering,
then symmetries of O are called � -symmetries of E .

Similarly are defined nonlocal quantities of any kind. For instance, Poisson struc-
tures in field theory discussed in Subsection 7.2 are nonlocal with respect to the orig-
inal PDE/diffiety.

Let �i W Oi ! E1; i D 1; 2; be two coverings of E1. A remarkable fact, which is
due to I. S. Krasil’shchik, is that the Lie bracket of a �1-symmetry and a �2-symmetry
can be defined as a � -symmetry for a suitable covering � W O ! E1 together with
coverings � 0

i W O! Oi ; i D 1; 2; such that � D �i ı � 0
i . The covering � is not defined

uniquely. Nevertheless, this non-uniqueness can be resolved by passing to a common
covering for “all parties in question.” The Jacobi identity as well as other ingredients
of Lie algebra theory can be settled in a similar manner (see [28, 29]). Thus, nonlocal
symmetries of a PDE E form this strange Lie algebra, and this fact in turn confirms
the validity of Definition 7.2.

Thus this definition incorporates all theoretically or experimentally known candi-
dates for symmetries of a PDE. Moreover, it brings us to a new challenging question:

Symmetries of which object are the elements of the above “strange” Lie
algebra?

Indeed, this algebra can be considered not only as the algebra of nonlocal symmetries
of the equation E but also as the symmetry algebra of any equation that covers E .
In other words, the question: What are partial differential equations? arises again in
this new context. But before we shall take a necessary look at the related problem of
construction of coverings.

7.4 Finding of coverings The problem of how to find coverings of a given equa-
tion is key from both practical and theoretical points of view. At present we are rather
far from its complete solutions. Therefore, below we shall illustrate the situation by
sketching a direct method, which works well for PDEs in two independent variables
and also supplies us with an interesting experimental material.

Let E 	 J k.E; n/; O D .M;D/ and � W O! E1 be a covering. A � -projectable
vector fieldX 2 D is of the formX D NXCV where NX 2 CE and V is � -vertical, i.e.,
tangent to the fibers of � . Locally � can be represented as the projectionU�W ! E1
withW being a pro-finite manifold and U a domain in E1. If U is sufficiently small,
then the restrictions NDi ; i D 1; : : : ; n; of the total derivatives Di s to U span the
distribution CE jU . The vector fields bDi 2 D that project onto the NDi span Dj�1.U /

and bDi D NDi C Vi where Vi is � -vertical. The Frobenius property of D is equivalent
to

0 D ŒbDi ; bDj �, Œ NDi ; Vj � � Œ NDj ; Vi �C ŒVi ; Vj � D 0; 1 � i < j � n: (6.43)
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By inverting this procedure we get a method to search for coverings of E1. Namely,
take a pro-finite manifold W with coordinates w1; w2; : : : and vector fields Vi DP
r ar@=@ws on U � W with indeterminate coefficients ar 2 C1.U � W /. Any

choice of these coefficients satisfying relations (6.43) defines a Frobenius distribution
spanfbD1; : : : ; bDng, which covers E1. Therefore, by resolving Equations (6.43) with
respect to the ar we get local coverings of CE . Many exact solutions of these equations
for concrete PDEs of interest can be found for n D 2 and they reveal a very interesting
structure, which we illustrate with the following example.

Example 7.1. For the KdV equation E D fut D uuxCuxxxgwe may take t; x; u; ux;
uxx; : : : for coordinates on E1. Then the vector fields

Dx
defD ND1 D @

@x
C

1X
sD0

usC1
@

@us
; Dt

defD ND2 D @

@t
C

1X
sD0

Ds
x.u3 C uu1/

@

@us
;

with us D ux:::x .s-times) span CE . Put Vx D V1; Vt D V2 and look for solutions
of (6.43) assuming that ar D ar.u; u1; u2; w1; w2; : : : / for simplicity. The result is
worth to be reported on in details. We have

Vx D u2AC uB C C;
Vt D 2uu2AC u2B � u21AC u1ŒB; C �C 2

3
u3AC

C1
2
.B C ŒB; ŒC; B��/C uŒC; ŒC; B��CD

(6.44)

with A;B;C;D being some fields on W such that

ŒA; B� D ŒA; C � D ŒC;D� D 0; ŒB;D�C ŒC; ŒC; ŒC; B��� D 0;

ŒB; ŒB; ŒB; C ��� D 0; ŒA;D�C 3
2
ŒB; ŒC; ŒC; B��� D 0:

(6.45)

This result tells that if we consider the Lie algebra generated by four elements
A;B;C;D, which are subject to the relations (6.45), then any representation of this
algebra by vector fields on a manifold W gives a covering of E1 associated with the
vector fields (6.44).

Remark 7.1. The Lie algebra defined by the relations .6.45/ “mystically” appeared
for the first time in the paper by H. D. Wahlquist and F. B. Estabrook [72], in which
they introduced the so-called prolongation structures. The fact that it is, as explained
above, a necessary ingredient in the construction of coverings is due to the author.

The reader will find many other examples of this kind together with related non-
local symmetries, conservation laws, recursion operators, Bäcklund transformations,
etc. in [28, 29, 25].
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7.5 But what really are PDEs? Now we can turn back to the question posed at
the end of Subsection 7.3. Recall that the possibility to commute nonlocal symmetries
of a PDE E living in different coverings of �i W Oi ! E1; i D 1; : : : ; m; is ensured
by the existence of a common covering diffiety O, i.e., a system of coverings � 0

i WO ! Oi such that � D �i ı � 0
i . Thus, in order to include into consideration all

nonlocal symmetries we must consider “all” coverings �˛ W O˛ ! E1 of E1 as well
as coverings O˛ ! Oˇ . In this way we come to the category Cobweb E of coverings
of E1. Then it is natural to call the universal covering of E the terminal object of
CobwebE . Denote this hypothetical universal covering by �E W OE ! E1; OE D
.ME ;DE/. Now it is easy to see that Cobweb E D CobwebE 0 if and only if there is
a common covering diffiety O, E1  O! E 01. In other words, E and E 0 are related
by a Bäcklund transformation (see Subsection 7.2). Recalling that coverings present
inversions of differential operators we can trace the following analogy with algebraic
geometry:

� Affine algebraic variety associated with an algebraic equation ) E1.

� Birational transformations connecting two affine varieties ) Bäcklund
transformations.

� The field of rational functions on an affine variety ) OE .

This analogy becomes a tautology if one considers algebraic varieties as PDEs in
zero independent variables. Indeed, any DO in this case is of zero order, i.e., multi-
plications by a function, and hence the inversion of such a DO is the division by this
function.

Unfortunately, the universal covering understood as a terminal object of a cate-
gory is not sufficiently constructive to work with. However, we have some indication
of how to proceed. From the theoretical side, the indication is to look for an analogue
of the fundamental group in the category of diffieties in order to construct the uni-
versal covering. By taking into account that we deal with infinitesimal symmetries it
would be more adequate to look for the infinitesimal fundamental group, i.e., for the
fundamental Lie algebra of the diffiety E1. On the other hand this idea is on an “ex-
perimental” ground. Namely, the Lie algebra associated with a Wahlquist–Estabrook
prolongation structure (see Example 7.1) is naturally interpreted as the universal al-
gebra for a special class of coverings.

In this connection a very interesting result by S. Igonin should be mentioned. In
[21] he constructed an object which possesses basic properties of the fundamental
algebra for a class of PDEs in two independent variables. Moreover, on this basis he
succeeded to prove the non-existence of Bäcklund transformations connecting some
integrable PDEs, for instance, the KdV equation and the Krichever–Novikiov equa-
tion.

Thus the question: What are PDEs? continues to resist well, and the reader may
see that this is a highly nontrivial conceptual problem. Yet though universal coverings
of diffieties (if they exist !) point at a plausible answer, a good bulk of work should
be done in order to put these ideas on a firm ground.
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8 A couple of words about secondary calculus

In these pages we, first, tried to attract attention to two intimately related questions:
“what are symmetries of an object?” and “what is the object itself?”. They form
something like an electro-magnetic wave when one of them induces the other and
vice versa. Probably, this dynamical form is the most adequate adaptation of the
background ideas of the Erlangen program to realities of present-day mathematics.
The launch of such a wave in the area of nonlinear partial differential equations was
the inestimable contribution of S. Lie to modern mathematics as it is now clearly seen
in the hundred-years retrospective.

In the above picture of the post-Lie phase of propagation of this wave we did
not touch such fundamental questions as what are general tensor fields, connections,
differential operators, etc. on the “space of all solutions” of a given PDE, i.e., on
the corresponding diffiety. They all together form what we call secondary calcu-
lus. It turns out that any natural notion or construction of the standard “differen-
tial mathematics” has an analogue in secondary calculus, which is referred to by
adding the adjective “secondary”. In these terms (higher) symmetries of a PDE E
are nothing but secondary vector fields on E1. Surprisingly, all secondary notions
are cohomology classes of suitable natural complexes of differential operators, one
of which, the jet-Spencer complex, was discussed in Section 6. For the whole picture
see [66].

To illustrate this point we shall give some details on secondary differential forms.
They constitute the first term of the C-spectral sequence, which is defined as follows.
Let O D .M;D/ be a diffiety and Dƒ.O/ D ˚i�0Dƒi .O/ the ideal of differen-
tial forms on M vanishing on the distribution D. This ideal is differentially closed
and its powers Dkƒ.O/ form a decreasing filtration of ƒ.O/. The C-spectral se-
quence fEp;qr .O/; dp;qOg is the spectral sequence associated with this filtration. By
definition, the space of secondary differential forms of degree p is the graded ob-
ject ˚nqD0E

p;q
1 .O/ and d1 is the secondary exterior differential. Note that a smooth

fiber bundle may be naturally viewed as a diffiety and the corresponding C-spectral
sequence is identical to the Leray–Serre spectral sequence of this bundle.

Nontrivial terms of the C-spectral sequence are all in the strip 0 � q � n; p � 0
with n D dimD, and E0;q1 .O/ D NH q.O/ (horizontal de Rham cohomology of O,
see Subsection 6.4). Below we write simplyEp;qr forEp;qr .O/ if the context does not
allow a confusion. Also recall that C-differential DOs are those that admit restrictions
to integral submanifolds of D.

The following proposition illustrates the fact that the calculus of variations is just
an element of the calculus of secondary differential forms.

Proposition 8.1. Let O D J1.E; n/. Then

1. If Ep;q1 is nontrivial, then either p D 0 or q D n (“one line theorem”).

2. E0;q1 D H q.J 1.E; n//, if q < n, and E0;n1 is composed of variational func-
tionals

R
! Ndx1 ^ � � � ^ Ndxn.
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3. d0;n1 is the Euler operator of the calculus of variations:

E
0;n
1 D NHn.J1.E; n// 3

Z
! Ndx1 ^ � � � ^ Ndxn

d0;n
17�! `�

!.1/ 2b~
whereb~ defD HomF .~; Nƒn.J1.E; n/// and `�

! stands for the adjoint to `! C-
differential operator.

4. E2;n1 D C Diffalt.~;b~/ D fskew-self-adjoint C-differential operators from ~ tob~g, and
d
1;n
1 Wb~ 3 ‰ 7�! `�

‰ � `�
‰ 2 C Diffalt.~;b~/:

5. Ep;n2 D HpCn.J 1.E; n// and, in particular, the complex fEp;n1 ; d
p;n
1 gp�0 is

locally acyclic.

The reader will find a similar description of the terms Ep;n1 and the differentials dp;n1

for p > 2 in [63, 66].
If O D E1, then the terms E0;q1 .O/ present various conserved quantities of the

equation E . For instance, the Gauss electricity conservation law is an element of
E
0;2
1 .E1/ for the system of Maxwell equations E . The term E

0;n�1
1 .E1/ is com-

posed of standard conservation laws of a PDE E , which are associated with conserved
densities. In this connection we have

Proposition 8.2. Let E be a determined system of PDEs and CL.E/ defD E
0;n�1
1 .E1/

the vector space of conservation laws for E . Then

1. If Ep;q1 is nontrivial, then either p D 0 or q D n� 1; n (“two lines theorem”).

2. kerd0;n�1
1 D Hn�1.E/ (trivial conservation laws).

3. E1;n�1
1 D ker `�

E and E1;n1 D coker `�
E .

‡ D d
0;n�1
1 .
/ is called the generating function of a conservation law 
 2

CL.E/. Assertion (2) of Proposition 8.2 tells that a conservation law is uniquely
defined by its generating function up to a trivial one. Moreover, by assertion (3) of
this proposition, generating functions are solutions of the equation `�

E‡ D 0, and this
is the most efficient known method for finding conservation laws (see [67, 29, 27]).

Propositions 8.1 and 8.2 unveil the nature of the classical Noether theorem. Namely,
by assertions (3) and (4) of Proposition 8.1, the Euler–Lagrange equation E corre-
sponding to the Lagrangian

R
! Ndx1 ^ � � � ^ Ndxn is ‰ D 0 with ‰ D `�

!.1/ and
`E D `�

E . In other words, Euler–Lagrange equations are self-adjoint. Thus, in this
case the equation `�

E D 0 whose solutions are generating functions of conservation
laws of E (assertion (3) of Proposition 8.2) coincides with the equations `E D 0
whose solutions are generating functions of symmetries of E (formula (6.25)). More-
over, we see that this relation between symmetries and conservation laws takes place
for a much larger class than the Euler–Lagrange class of PDEs, namely, the class of
conformally self-adjoint equations: `�

E D �`E ; � 2 FE .
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All natural relations between vector fields and differential forms such as Lie
derivatives, insertion operators, etc. survive at the level of secondary calculus in the
form of some relations between the horizontal jet-Spencer cohomology and the first
term of the C-spectral sequence. Also, a morphism of diffieties induces a pull-back
homomorphism of C-spectral sequences. In particular, this allows to define nonlocal
conservation laws of a PDE E as conservation laws of diffieties that cover E1. These
are just a few of numerous facts that show high self-consistence of secondary calculus
and its adequacy for needs of physics and mechanics.

Remark 8.1. The C-spectral sequence was introduced by the author in [56]. It was
preceded by some works by various authors on the inverse problem of calculus of
variations and the resolvent of the Euler operator .or the Lagrange complex/. These
works may now be seen as results about the C-spectral sequence for O D J1.�/
.see, for instance, [31, 52]/. If E 	 J k.�/, then the first term of the C-spectral
sequence for E1 	 J1.�/ acquires the second differential coming from the spectral
sequence of the fiber bundle �1 W J1.�/ ! M and it becomes the variational
bicomplex associated with E . This local interpretation of the C-spectral sequence is
due to T. Tsujishita [53], who described these two differentials in a semi-coordinate
manner.

9 New language and new barriers

In the preceding pages we were trying to show that a pithy general theory of PDEs
exists and to give an idea about the new mathematics that comes into light when de-
veloping this theory in a systematic way. Even now this young theory provides many
new instruments allowing the discovery of new features and facts about well-known
and for long time studied PDEs in geometry, mechanics and mathematical physics.
The theory of singularities of solutions of PDEs sketched in Section 4 is an example of
this to say nothing about symmetries, conservation laws, hamiltonian structures and
other more traditional aspects. Moreover, numerous possibilities, which are within
one’s arm reach, are still waiting to be duly elaborated simply because of a lack of
workmen in this new area. This situation is to a great extent due to a language barrier,
since

the specificity of the general theory of PDEs is that it cannot be sys-
tematically developed in all its aspects on the basis of the traditionally
understood differential calculus.

Indeed, one very soon loses the way by performing exclusively direct manipulations
with coordinate-wise descriptive definitions of objects of differential calculus, espe-
cially if working on such infinite-dimensional objects as diffieties. By their nature,
these descriptive definitions cannot be applied to various situations when some kind
of singularities or other nonstandard situations occur naturally. Not less important



6 What are symmetries of PDEs? 185

is that descriptive definitions give no idea about natural relations between objects of
differential calculus. Typical questions that can in no way be neglected when dealing
with the foundations of the theory of PDEs are: “What are tensor fields on mani-
folds with singularities, or on pro-finite manifolds, or what are tensor fields respect-
ing a specific structure on a smooth manifold”, etc. This kind of questions becomes
much more delicate when working with diffieties.

All these questions can be answered by analyzing why and how the traditional
differential calculus of Newton and Leibniz became a natural language of classical
physics (including geometry and mechanics). Since the fundamental paradigm of
classical physics states that existence means observability and vice versa, the first
step in this analysis must be a due mathematical formalization of the observability
mechanism in classical physics.

We do that by assuming that from a mathematical point of view a classical phys-
ical laboratory is the unitary algebra A over R generated by measurement instru-
ments installed in this laboratory and called the algebra of observables. A state of
an observed object is interpreted as a homomorphism h W A ! R of R-algebras
(� “readings of all instruments”). Hence the variety of all states of the system is
identified with the real spectrum SpecRA of A. The validity of this formalization
of the classical observation mechanism is confirmed by the fact that all aspects of
classical physics are naturally and, even more, elegantly expressed in terms of this
language. Say, one of the simplest necessary concepts, namely, that of velocity of an
object at a state h 2 SpecR A is defined as a tangent vector to SpecRA at the “point”
h, i.e., as an R-linear map � W A! R such that �.ab/ D h.a/�.b/Ch.b/�.a/. Thus,
velocity is a particular first order DO over the algebra A of observables in the sense
of Definition 5.1. In this case P D A and Q D R as an R-vector space with the

R-module product a ? r
defD h.a/r; a 2 A; r 2 R. The reader will find other simple

examples of this kind in an elementary introduction to the subject [42].
Thus, by formalizing the concept of a classical physical laboratory as a commu-

tative algebra, we rediscover differential calculus in a new and much more general
form. The next question is: “What is the structure of this new language and what
are its informative capacities?” In the standard approach the zoo of various structures
and constructions in modern differential and algebraic geometry, mechanics, field
theory, etc. that are based on differential calculus seems not to manifest any regular-
ity. Moreover, numerous questions like “why do skew symmetric covariant tensors,
i.e., differential forms, possess a natural differential d , while the symmetric ones do
not” cannot be answered within this approach. On the contrary, in the framework
of differential calculus over commutative algebras all these “experimental materials”
are nicely organized within a scheme composed of functors of differential calculus
connected by natural transformations and the objects that represent them in various
categories of modules over the ground algebra.

The reader will find in a series of notes [69] various examples illustrating what
one can discover by analyzing the question “what is the conceptual definition of co-
variant tensors”. From the last three notes of this series he can also get an idea on the
complexity of the theory of iterated differential forms and, in particular, tensors, in
secondary calculus.



186 Alexandre Vinogradov

It should be especially mentioned that new views, instruments and facts coming
from the general theory of PDEs and related mathematics offer not only new perspec-
tives for many branches of contemporary mathematics and physics but at the same
time put in question some popular current approaches and expectations ranging from
algebraic geometry to QFT. Unfortunately, there is too much to say in order to present
the necessary reasons in a satisfactory manner.

We conclude by stressing that

The complexity and the dimension of problems in the general theory
of PDEs are so high that a new organization of mathematical research
similar to that in experimental physics is absolutely indispensable.

Unfortunately, the dominating mentality and the “social organization” of the modern
mathematical community seems not to be sufficiently adequate to face this challenge.
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1 Introduction

The aim of this chapter is to survey some aspects of the links unifying a geometric
structure S on a smooth manifold M , and its group of automorphisms Aut.M;S/,
namely, the group of diffeomorphisms of M preserving S . This domain of research,
which could be called theory of geometric transformation groups, takes its roots in
the pioneering ideas of S. Lie, and developed all along the past century, to blossom
into a vast area where a wide range of mathematics meet: Lie theory of course, but
also differential geometry, dynamical systems, geometry of foliations, ergodic theory,
algebraic actions, etc.
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One of the main motivations to study Lie group actions preserving a geometric
structure comes from the fact that for a lot of interesting structures, the automor-
phism group itself is always a Lie transformation group.1 What we call “fact” here is
actually the result of a series of theorems. One of the earliest is due to S. Myers and
N. Steenrod, who proved that the isometry group of a Riemannian manifold is always
a Lie group.

Theorem 1.1 ([32]). Let .M; g/ be an n-dimensional Riemannian manifold. Then
the isometry group Iso.M; g/, endowed with the compact open topology, is a Lie
transformation group of dimension at most n.nC1/

2
. Moreover this group is compact

as soon as M is compact.

From the proof of the theorem, one gets also a local result, which is that on each
open subset U 	 M , the Lie algebra of Killing fields, namely, the vector fields
defined on U and generating local flows of isometries, is finite dimensional. The
dimension is again at most n.nC1/

2
.

The geometric structures for which the two following facts always hold:

1. the automorphism group is a Lie transformation group;

2. the dimension of the Lie algebra of local Killing fields is finite

will be called rigid in this paper. Actually, there is a more precise and very general
definition of rigid geometric structures introduced by Gromov in [25], which turns
out to imply points .1/ and .2/ above. To avoid too much technicalities, we will keep
our “rough” definition here.

The Myers–Steenrod theorem was followed by many other works which increased
the list of geometric structures which are known to be rigid. Thus, pseudo-Riemannian
metrics, affine connections, projective structures, conformal structures in dimension
� 3 turned out to be rigid.

On the other hand, there are structures, like for instance symplectic structures,
which are not rigid. Any Hamiltonian flow on a symplectic manifold .M;!/ acts by
symplectomorphisms, so that there are far too much symplectic automorphisms for
Conditions .1/ and .2/ to be satisfied.

Observe also that some structures like complex ones display an intermediate be-
havior. By a theorem of Bochner and Montgomery, the automorphism group of
a compact complex manifold is a Lie transformation group, so that for compact struc-
tures, Condition .1/ is satisfied. Nevertheless, Condition .2/ clearly always fails, and
we won’t retain complex structures as being rigid.

Assume now that we focus on a certain class of geometric structures, which are
known to be rigid. For instance, we study Riemannian metrics, or Lorentzian ones,
or affine connections. Given a manifold M endowed with a structure S belonging to
our given class, it is natural to ask what kind of Lie group Aut.M;S/ can be. More
precisely,

1The precise definition of a Lie transformation group will be given at the beginning of Section 2.
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Question 1.2. What are the possible Lie groups that can be the automorphism group
Aut.M;S/ of a structure .M;S/ of the class we are considering, when M is a com-
pact manifold?

For instance, Theorem 1.1 says that the isometry group of a compact Rieman-
nian manifold must be a compact Lie group. Conversely, it is shown in [38] that any
compact Lie group may be realized as the full isometry group of a compact manifold.
Hence, Question 1.2 is completely settled for Riemannian structures on compact man-
ifolds.

Observe that Question 1.2 is meaningless if we don’t put any global assumption
on M , like compactness. To see this, let us consider any Lie group H , and put on
its Lie algebra a Euclidean scalar product. Pushing this scalar product by left transla-
tions yields a left-invariant Riemannian metric onH . Thus, without any compactness
assumption, we see that any Lie group may appear as a subgroup of isometries of
a Riemannian manifold.

Answering Question 1.2 for other structures than Riemannian metrics is gener-
ally a hard problem, which is solved completely in very few cases. The subject got
a renewed impulse thanks to the very influential works of Gromov and Zimmer in the
eighties (see in particular the monumental [25], as well as [52]). We will present in
Sections 3 and 4 definitive results on this problem, and partial ones in Section 5.

One of the difficulties to tackle Question 1.2 is that for most rigid geometric struc-
tures, there is no analogue of the Myers–Steenrod theorem. One can indeed exhibit
instances of compact structures with a noncompact automorphism group. On the
other hand, it is expected that such occurrences are rather unusual. A good illus-
tration is the following result, proved by J. Ferrand, and independently (in a weaker
form) by M. Obata in the early 1970s.

Theorem 1.3 ([33][18]). A compact connected Riemannian manifold .M; g/ of di-
mension n � 2 having a noncompact group of conformal diffeomorphisms must be
conformally diffeomorphic to the standard sphere Sn.

This result is extremely strong, since the mere assumption of noncompactness of
the automorphism group is enough to single out only one space: the model space of
compact conformal Riemannian structures.

In the survey [15], it is vaguely conjectured that compact rigid geometric struc-
tures with a large automorphism group should be peculiar enough to be classified.
Rather than a conjecture, we should speak of a principle, which is indeed illustrated
by a lot of beautiful results, as Theorem 1.3. The heuristics is as follows. Rigid geo-
metric structures, generically, do not admit any symmetry at all (local or global). The
reader could take the example of a “generic” Riemannian metric as an illustration.
The presence of a lot of symmetries is thus extremely unlikely. At the end of the
spectrum, one has the highly non-generic case of structures which are homogeneous,
or locally homogeneous, if we just consider local symmetries. These structures are
few, but generally beautiful and play a prominent role in the theory. We will be espe-
cially interested in results showing that rather mild assumptions on the automorphism
group force local homogeneity.
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Beside noncompactness, other notions of “largeness” for the automorphism group
are of interest. For instance, the condition can be put on the action of the group itself.
Noncompactness amounts to a nonproperness assumption, but stronger dynamical
conditions can be relevant: ergodicity, existence of a dense orbit etc. In this regard,
a very striking result was obtained by Gromov in [25]. It is often called open dense
orbit theorem.

Theorem 1.4 ([25]). Let .M;S/ be a rigid geometric structure of algebraic type.
Assume that the group Aut.M;S/ acts on M with a dense orbit. Then there exists
a dense open subset U 	M which is locally homogeneous.

We won’t define here the expression “algebraic type” in the above statement. The
theorem applies to all the examples of rigid structures we have been considering so
far: pseudo-Riemannian metrics, affine connections, etc. This is again a nice illustra-
tion of the principles presented above, even though the conclusion is slightly weaker
than the one expected: the local homogeneity of the structure holds only on a dense
open set. Passing from local homogeneity on this dense open set to the whole mani-
fold is in general extremely difficult (actually it might be false in full generality), but
is possible in certain cases [16], [5].

The organization of the chapter is as follows. We will first discuss several notions
of geometric structures in Section 2, focusing on Cartan geometries andG�structures
of finite type, for which the automorphism group is always a Lie transformation
group. In Sections 3 and 4, we will present classification theorems for the automor-
phism group of conformal Riemannian structures, and Lorentzian metrics. Section 5
will be devoted to other geometric structures, for which the picture is less precise. We
will emphasize results of Zimmer yielding valuable information about the structure
of the Lie algebra of automorphisms of G�structures, as well as some developments
in the realm of Cartan geometries, focusing on pseudo-Riemannian conformal struc-
tures.

2 Rigid geometric structures

Until now, our use of expressions such as “geometric structure” or “rigid structure”
was rather informal. In any case, it is always rather arbitrary to adopt a definition
of what a geometric structure is. Nevertheless, it is nowadays broadly accepted that
a decisive step toward the modern way of viewing geometry was achieved by Klein,
who was the first to consider a geometric structure as a manifoldM acted upon (tran-
sitively) by a group G, and the study of all properties which are invariant under the
group action. The modern formulation is that of a Klein geometry, as a homogeneous
space G=P , where G is a Lie group and P a closed Lie subgroup ofG. Whereas this
point of view was extremely successful to unify the “classical” geometries such as Eu-
clidean, hyperbolic, spherical, projective geometries, etc. it was later on considered
as too restrictive for a general definition of geometric structure. As the mere example
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of Riemannian geometry shows, homogeneous structures are clearly the exception,
not the rule. Thus, other attemps were made during the twentieth century to find
broader definitions of geometric structures. We present briefly two of them below,
which will be of interest for our purpose. Especially, those structures will have the
remarkable property that their automorphism group is always a Lie transformation
group.

Recall at this point that if M is a smooth manifold, a subgroup H 	 Diff1.M/
is a Lie transformation group if it can be endowed with a Lie group structure for
which the action H �M ! M is smooth. Moreover, one requires that any flow of
diffeomorphisms included in H is a 1-parameter group for the Lie group structure
of H .

2.1 Cartan geometries A first broad generalization of Klein’s definition of ge-
ometry was introduced by É. Cartan under the name “espaces généralisés”. It is
actually the most natural extension of Klein’s point of view, since it gives a precise
meaning of what a “curved analogue” of a Klein geometry is. To understand the no-
tion of a Cartan geometry, we start with a homogeneous space X D G=P , and we
reverse slightly Klein’s point of view, looking for geometric data on X whose au-
tomorphism group is exactly G. By geometric data, we mean here something like
a tensor, or a connection, on the space X, or on some space naturally built from X.

The nice thing is that there is a general answer to this question, whatever the ho-
mogeneous space X is. Let us indeed consider the group G itself as a P -principal
fiber bundle over G=P , and put on G the so called Maurer–Cartan form !MC . This
is the 1-form on G, with values in the Lie algebra g, such that for every left-invariant
vector field X , !MC .X/ D X.e/. It is not very hard to check that the automor-
phisms of the P -bundle G ! G=P , which moreover preserve !MC , are exactly the
left translations on the groupG. So, on our homogeneous space X, we get a nice dif-
ferential geometric structure, namely, the fiber bundleG ! X, and the 1-form !MC ,
which is natural in the sense that its automorphism group is exactly G.

The next step is to generalize this picture to an arbitrary manifold M of the same
dimension as X. This is easily done by considering the following data:

� A P -principal fiber bundle OM !M .

� A 1-form ! on OM with values in the Lie algebra g, which mimics the Maurer–
Cartan form. In particular, one requires that at every point Ox of OM , the map ! W
T Ox OM ! g is a linear isomorphism. One also requires equivariance properties
of ! with respect to the actions of P on OM and g, but we won’t mention them
here. The reader who wants to know more about Cartan geometries is referred
to the very comprehensive [37] and [9].

The triple . OM;M;!/ is called a Cartan geometry modelled on X, and the form !

a Cartan connection. A Cartan geometry . OM;M;!/ modelled on X D G=P is often
referred to as a curved analogue of the Klein geometry X. The precise meaning of
this sentence is made clear by the following remark. The Maurer–Cartan form on the
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Lie group G satisfies a property, known as the Maurer–Cartan equation. If X and Y
are two vector fields on G, then the equation reads:

d!MC .X; Y /C Œ!MC .X/; !MC .Y /� D 0: (7.1)

Now, for a general Cartan geometry . OM;M;!/ modelled on X D G=P , one can
introduce the curvature formK, which is defined, for any pair .X; Y / of vector fields
on OM as

K.X; Y / D d!.X; Y /C Œ!.X/; !.Y /�:
In general, the curvature form is not zero, and actually, one shows that the curvature
form vanishes identically if and only if the Cartan geometry . OM;M;!/ is locally
equivalent to the model .G;X; !MC /. Hence, spaces locally modelled on the homo-
geneous space X (which are commonly called .G;X/�structures) are just flat Cartan
geometries modelled on X.

The notion of a Cartan geometry is an elegant way of formalizing what is a curved
Klein geometry. But one drawback of the definition is that it involves an abstract
fiber bundle OM over our manifold M , whereas one would rather like to work with
geometric data directly available on M . Thus, if one fixes once and for all the model
homogeneous space X D G=P , two natural questions arise:

1. Given a Cartan geometry, modelled on X, on a manifold M , can we interpret
the data .M; OM;!/ on X in terms of geometric data S on M (such as tensors,
connections, etc.).

2. Conversely, if such a set of geometric data S is given on M , can we build
a P -principal fiber bundle � W OM !M , which is natural with respect to S , as
well as a Cartan connection ! W T OM ! g, so that the procedure described in
point .1/, when applied to the triple .M; OM;!/, yields back S . One would like
moreover to find suitable normalization conditions which make the connection
! unique.

A model homogeneous space X D G=P being given, we say that the equivalence
problem is solved for Cartan geometries modelled on X if we can give a positive
answer Problems .1/ and .2/. This is for instance the case for Cartan geometries
modelled on the Euclidean space En D O.n/ Ë Rn=O.n/. Such a geometry on
a manifold yields a Riemannian metric g onM . Conversely, the existence of the Levi-
Civita connection allows to build a Cartan connection ! on OM , the O.n/�bundle of
orthonormal frames associated to g. The fact that the Levi-Civita connection is the
only torsion-free connection compatible with the metric ensures the uniqueness of
this “normal” Cartan connection !.

Classical examples of Cartan geometries The most interesting Cartan geometries
to consider are of course those for which the equivalence problem is solved. We
give examples below, but the reader should keep in mind that except for very few
cases, solving the equivalence problem and proving the existence of a normal Cartan
connection is not an easy matter at all. Since the pioneering works of É. Cartan ([10]),
some deep advances on this problem were done in [13], [39], [8] among others.
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1. Pseudo-Riemannian structures of type .p; q/ are Cartan geometries modelled
on type .p; q/ Minkowski space Ep;q D O.p; q/ Ë R

n=O.p; q/.

2. In dimensions p C q � 3, conformal classes of type .p; q/ metrics are Cartan
geometries (this was proved by É. Cartan himself in the Riemannian case).
The model space X is the pseudo-Riemannian conformal analogue of the round
sphere Sn. It is called Einstein’s universe of signature .p; q/, denoted Einp;q ,
and is the product Sp � Sq endowed with the conformal class of the product
metric �gSp ˚ gSq (where gSm stands for the round Riemannian metric on
S
m). As a homogeneous space under its conformal group, it can be written as

Einp;q D O.p C 1; q C 1/=P , where P is the stabilizer of a null direction. In
Riemannian signature p D 0, Ein0;q is just the round sphere.

3. NondegenerateCR structures (structures appearing on real hypersurfaces with
nondegenerate Levi form in complex manifolds) are Cartan geometries mod-
elled on the boundary of the complex hyperbolic space, namely, the homoge-
neous space X D PSU.p C 1; q C 1/=P , where P is the stabilizer of a null
direction.

4. Affine connections on an n-dimensional manifold M are Cartan geometries
modelled on the affine space An D GL.n;R/ Ë R

n=GL.n;R/.

5. Projective classes of affine connections in dimension n are Cartan geometries
modelled on the n-dimensional projective space RPn D PGL.nC 1;R/=P .

6. Conformal, CR and projective structures are instances of parabolic geome-
tries, which are Cartan geometries modelled on a homogeneous space X D
G=P , for which G is a simple Lie group and P a parabolic subgroup. Thanks
to the works [39], [8], the equivalence problem is solved for almost all parabolic
geometries, meaning that there is a one-to-one correspondence between para-
bolic geometries with suitable normalizations made on the Cartan connection,
and certain geometric data on the manifold.

Rigidity of Cartan geometries LetM be a manifold endowed with a Cartan geome-
try S modelled on some homogeneous space X. By S , we mean the triple . OM;M;!/.
One defines naturally an automorphism of this geometry as a bundle automorphism
Of W OM ! OM satisfying Of �! D !. When we deal with geometries for which the

equivalence principle holds, and if S stands as well for the geometric data on M
equivalent to the triple . OM;M;!/, then the automorphisms are exactly the diffeo-
morphisms f WM ! M satisfying f �S D S (in the sense that such f lift naturally
to automorphisms Of of OM in the previous sense). There is also a notion of Killing
field of S , as a vector field generating local flows of automorphisms.

A very important and nice feature of the automorphism group of a Cartan geom-
etry is the

Theorem 2.1. Let M be a manifold endowed with a Cartan geometry S . Then the
automorphism group Aut.M;S/ is a Lie transformation group.
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Moreover, on each open subset of M , the Lie algebra of Killing fields has dimen-
sion at most dim g.

Let us indicate why this theorem holds. The main point is that the Cartan con-
nection ! defines naturally a parallelism (one says also a framing) on OM , namely,
a family OX1; : : : ; OXs of vector fields of OM , where s D dim OM D dim g, such that at
every Ox 2 OM , . OX1. Ox/; : : : ; OXs. Ox// is a basis of T Ox OM . To build this parallelism, it is
enough to consider a basis .X1; : : : ; Xs/ of g, and to define OXi D !�1.Xi/. Hence
Aut.M;S/ is identified with a closed subgroup of the group of automorphisms of our
parallelism, the latter being itself a Lie transformation group, when endowed with the
compact open topology. To see this, let us first observe that the group of diffeomor-
phisms preserving a parallelism P on a manifold must act freely. Indeed, if such an
automorphism fixes a point x0, then it must fix pointwise any curve � through this
point, such that � 0 has constant coordinates in the frame field defining the parallelism.
But a straigthforward application of the inverse mapping theorem shows that the set
of such curves fills in an open neighborhood of x0. Hence, the set of fixed points
of our automorphism is open, and since it is of course closed, the automorphism is
trivial. We infer for instance that a Killing field of a parallelism having a zero must be
identically zero. This yields the bound on the dimension of the Lie algebra of local
Killing fields in Theorem 2.1.

Another consequence of the freeness of the action is that the automorphism group
of a parallelism can always be identified with any of its orbits. One has then to
show that this identification is a homeomorphism and the orbits are closed smooth
manifolds, which is a little bit more involved (details can be found in [26, Theorem
3.2]).

The above argument shows that the topology on Aut.M;S/, making it a Lie trans-
formation group, is the one inherited after identifying Aut.M;S/with one of its orbits
on OM . In general, OM is a subbundle of the bundle of m-jets of frames over M . Thus
a sequence .fk/ converges in Aut.M;S/ when .fk/, together with its m first deriva-
tives, converges uniformly on compact subsets ofM . In some cases, extra arguments
show that this topology is actually the one induced by the compact-open topology on
Homeo.M/.

2.2 G -structures Beside Cartan geometries, there is another family of geometric
structures, called G-structures, which was studied a lot by differential geometers.

Let us consider a smooth n-dimensional manifold M , and the bundle R.M/ of
frames of M (this is a GL.n;R/-principal bundle). Let G be a closed subgroup of
the linear group GL.n;R/. One defines a G-structure on the manifold M as a G-
subbundle OM of the bundle R.M/. This means that at each point of M , we select
a subclass of distinguished frames (or, equivalently, we select a distinguished class of
charts at each point of M ).

There is a natural notion of automorphism for a G-structure: this is a diffeomor-
phism f W M ! M whose action on R.M/ preserves the subbundle OM defining
the G-structure. In the same way, one defines what is an isomorphism between two
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G-structures. Unlike for Cartan geometries, there is no direct notion of curvature
for a G-structure, but there is still the notion of a flat (one says also integrable) G-
structure, as one which is locally isomorphic to R

n�G 	 R
n�GL.n;R/ (where the

product Rn �GL.n;R/ is identified with the frame bundle of Rn).

1. For G D O.p; q/, a G-structure on a manifold M is equivalent to the choice
of a pseudo-Riemannian metric g of type .p; q/. The subbundle OM of the
frame bundle defining theG-structure is then merely the bundle of orthonormal
frames.

2. For G D R
� � O.p; q/, where the factor R� denotes the homothetic maps in

GL.n;R/, a G-structure on M is the same as the choice of a conformal class
Œg� D fe	g j � 2 C1.M/g of type .p; q/ pseudo-Riemannian metrics.

3. Let ! D †dxi ^dyi be the standard symplectic form on R
2n and Sp.n;R/ the

group of linear transformations of R2n preserving !. An Sp.n;R/-structure
on a manifold M is called an almost symplectic structure. It is a genuine
symplectic structure (i.e d! D 0) if and only if it is flat (this is Darboux’s
theorem).

Other examples of interesting G-structures are presented in [26, Chapter I].
Let us now make a trivial remark: a GL.n;R/-structure on some n-dimensional

manifold yields nothing more than the differentiable structure. Hence, any diffeo-
morphism of M is an automorphism of the structure. It is thus clear that we cannot
expect allG-structures to be rigid (another example is given by symplectic structures,
see .3/ above). So, a natural question is: can we determine, among all G-structures,
which ones are rigid?

There is a reasonable answer to this question, and it depends only on data involv-
ing the Lie algebra g. Let us fix the Lie group G 	 GL.n;R/. Let us identify the
bundle of frames of Rn as the product Rn � GL.n;R/, and let us consider the flat
G-structure on Rn as the subbundle Rn �G 	 Rn � GL.n;R/. Let us try to exhibit
a lot of Killing fields for this G-structure. Recall that by a Killing field, we mean
a vector field X whose local flow acts by G-bundle automorphisms of Rn � G. Let
k � 0 be an integer, let Li , i D 1; : : : ; n, be symmetric .k C 1/-linear forms on R

n,
and let X be the polynomial vector field defined by

X.x/ D †niD1Li .x; : : : ; x/
@

@x i
:

What is the condition for X to be a Killing field? Looking at the action of the local
flow of X on the frame bundle, a necessary and sufficient condition is that for every
x 2 R

n, the endomorphism of Rn given by

u 7!

0
B@
L1.x; : : : ; x; u/

:::
Ln.x; : : : ; x; u/

1
CA
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is an element of g. Differentiating k times, we find another necessary (and sufficient)
condition which is that for every vectors v1; : : : ; vk , the endomorphism

u 7!

0
B@
L1.v1; : : : ; vk; u/

:::
Ln.v1; : : : ; vk; u/

1
CA

is in g.
This motivates the definition of the k-th extension gk of g as the set of symmetric

.k C 1/�linear maps
' W Rn � : : :� R

n ! R
n;

such that the endomorphism u 7! '.v1; : : : ; vk; u/ is in g for every choice of the k
first entries v1; : : : ; vk . One easily checks that g0 D g, and whenever gk D 0, then
gj D 0 for every j > k.

The alternative is then as follows. Either gk 6D 0 for every k 2 N, and in this
case the flat G-structure admits Killing fields of the form X D †niD1Li

@
@xi

, with Li
a polynomial of arbitrary large degree. The algebra of Killing fields is thus infinite-
dimensional for the flat structure, and we won’t retainG-structures as rigid structures.

More interestingly, if for some k 2 N, gkC1 D 0, one can define successive
extensions of the frame bundle R.M/ as well, such that the last one yields a P -
principal bundle OMk overM , endowed with a natural parallelism (the reader will find
details in [26, Chapter I]). Here, P is a Lie group with Lie algebra g˚ g1˚ : : :˚ gk ,
and “natural” means that every automorphism f W M ! M of the G-structure lifts
to a bundle automorphism of OMk preserving the parallelism.

As for Cartan geometries, one can conclude:

Theorem 2.2 ([26], Theorem 5.1). LetM be a manifold endowed with a G-structure
of finite type S . Then the automorphism group Aut.M;S/ is a Lie transformation
group.

One can also show, as for Cartan geometries, that the dimension of the Lie alge-
bra of local Killing fields is finite. Examples of G-structures of finite type are, for
instance:

� Pseudo-Riemannian metrics of type .p; q/ (g D o.p; q/ and g1 D 0).

� Conformal structures of type .p; q/ when p C q � 3 (g D R ˚ o.p; q/, and
g2 D 0).

� One can also interpret the notion of affine connection, or projective class of
such connections, but it is then necessary to introduce G-structures of higher
order, but we won’t do that here.
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3 The conformal group of a Riemannian manifold

In the previous section, we exhibited quite a large classe of structures, whose auto-
morphism group is a Lie group. For these structures, we can consider Question 1.2
formulated in the introduction: a given class of structures being fixed, what are the
possible Lie groups Aut.M;S/, for M compact and S belonging to the class consid-
ered.

As we already mentioned, the first complete general result regarding this question
was proved for Riemannian structures by Myers and Steenrod in [32]. Their result
describes the isometry group of a compact Riemannian manifold .M; g/, namely, the
group of smooth diffeomorphisms ' WM !M satisfying '�g D g. For the reader’s
convenience, we recall the statement:

Theorem 3.1 ([32]). Let .M; g/ be an n-dimensional Riemannian manifold. Then the
isometry group Iso.M; g/, endowed with the compact open topology is a Lie transfor-
mation group of dimension at most n.nC1/

2
. Moreover this group is compact as soon

as M is compact.

This is now a direct consequence of Theorem 2.1 (or equivalently 2.2). Observe
that the theorem contains an extra information about the topology making Iso.M; g/
a Lie transformation group. It is induced here by the compact open topology, and
we saw in Section 2.1 that this fact is generally not straigthforward. This amounts
to showing that Iso.M; g/ is closed in the group of homeomorphisms of M , namely,
that a C 0 limit of smooth isometries is still smooth. The reason why this holds is
that a homeomorphism preserving the distance defined by g must send parametrized
geodesics to parametrized geodesics. The smoothness of such a transformation fol-
lows.

3.1 The theorem of Obata and Ferrand Let us now start with a Riemannian
manifold .M; g/ and let us take as a geometric structure the conformal class Œg� D
fe	g j � 2 C1.M/g: In dimension at least three, (pseudo)-Riemannian conformal
structures are Cartan geometries (and G-structures of finite type as well), hence by
Theorem 2.1, the group of conformal diffeomorphisms Conf.M; g/
(namely, the diffeomorphisms preserving the conformal class) is a Lie group. Ob-
serve that a conformal diffeomorphism is a transformation preserving angles between
curves. Obviously, the group of conformal diffeomorphisms ofM contains the isom-
etry group of any metric in the conformal class Œg�.

This inclusion can be strict, as shows the example of the round n-sphere Sn D
.Sn; g0/, where g0 is “the” metric with constant curvature C1 on S

n. The isom-
etry group of Sn is O.n C 1/, whereas the conformal group is the Möbius group
PO.1; n C 1/. The latter is noncompact, showing that one cannot expect a gener-
alization of Theorem 3.1 for Riemannian conformal structures. At first glance, it is
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not unreasonable to expect the noncompactness of the conformal group to be a rather
general phenomenon. But if the reader tries to determine the conformal group of
classical spaces in Riemannian geometry (the real projective space RPn, flat tori,
compact hyperbolic manifolds, etc.), he will always find a compact group. Actu-
ally, Lichnerowicz conjectured, in the middle of the sixties, that noncompactness of
the conformal group for compact Riemannian manifold only occurs for the standard
sphere. His guess became a theorem a few years later, thanks to independent works
by Ferrand and Obata.

Theorem 3.2 ([33][18]). A compact connected Riemannian manifold .M; g/ of di-
mension n � 2 having a noncompact conformal group must be conformally diffeo-
morphic to the standard sphere Sn.

Actually, the result obtained by Obata in [33] is weaker, since he made the stronger
assumption that the identity component Confı.M/ is noncompact. For instance,
Obata’s result did not cover the possibility (which a posteriori never occurs) of an
infinite discrete conformal group.

Theorem 3.2 settles Question 1.2 for Riemannian conformal structures. Indeed, it
says that for a compact Riemannian manifold .M; g/, the conformal group Conf.M; g/
is either a compact Lie group, or the Möbius group PO.1; nC1/. The latter possibility
only occurs for the standard sphere Sn.

3.2 The idea of the proof of the Ferrand–Obata theorem We will work
in dimension � 3 (for n D 2, Theorem 3.2 is a consequence of the uniformization
theorem for Riemann surfaces). The proof is made of two distinct steps. The first
one is to use the noncompactness assumption on the conformal group to show that
.M; g/ is conformally flat, namely, every sufficiently small open subset of .M; g/ is
conformally diffeomorphic to an open subset of Euclidean space En. The second step
uses tools from the theory of .G;X/-structures to show that a compact conformally
flat manifold which is not the standard sphere has a compact conformal group.

Let us recall that whereas any Riemannian metric on a surface is conformally
flat (this was first shown by Gauss in the analytic case), the situation is completely
different in dimension � 3. Then, there exists a tensorW on M , that we will call the
conformal curvature, which vanishes if and only if .M; g/ is conformally flat. This
tensor W is the Weyl (resp. Cotton) tensor in dimension � 4 (resp. in dimension 3).

On a Riemannian manifold .M; g/, the conformal curvature allows to build a con-
formally invariant “metric” putting hg D jjW jj˛gg, where jW jjg denotes the norm of
the tensor W with respect to g, and ˛ D 1 (resp. ˛ D 3

2
) when the dimension is � 4

(resp. is 3). Of course, hg is not really a Riemannian metric because W may vanish
at some points. Nevertheless, if we assume that .M; g/ is not conformally flat, hg is
not identically zero. Hence we can define a nontrivial, conformally invariant, singular
distance

dh.x; y/ D inf
�

Z
hg .�

0; � 0/;

the infimum being taken over all � ’s joining x to y.
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Now, still assuming that .M; g/ is not conformally flat, let us consider the closed
subset K on which the conformal curvature vanishes. This is a proper subset of M ,
and if K� D fx 2 M; dh.x;K/ � �g, then .K�; dh/ is, for � sufficiently small,
a genuine (i.e nonsingular) metric space. Moreover, K� is invariant by the confor-
mal group Conf.M; g/, and this group acts isometrically with respect to dh. Using
Ascoli’s theorem, and elaborating a little bit, one infers that Conf.M; g/ is compact.

This completes the first step: whenever Conf.M; g/ is noncompact, then .M; g/
must have locally the same conformal geometry as the standard sphere Sn.

The second part of the proof aims at globalizing this local result. Once we know
that .M; g/ is conformally flat, then we also know since Kuiper (see [27]), that there
is a conformal immersion ı W QM ! Sn (where QM stands for the universal cover of
M ), called developing map, as well as a morphism � W Conf. QM; Qg/! PO.1; nC 1/
satisfying the equivariance relation

ı ı � D �.�/ ı ı: (7.2)

The noncompactness of Conf. QM; Qg/ implies that of �.Conf. QM; Qg//. Now, diver-
gent sequences .gk/ in PO.1; n� 1/ have (up to extracting a subsequence) a “north-
south” type dynamics, meaning that there is an attracting, and a repelling pole for the
sequence .gk/. The equivariance relation (7.2) allows to show that some noncom-
pact sequence .fk/ in Conf. QM; Qg/ has a repelling pole on QM , and that there exists
a small open set U 	 QM on which ı is one-to-one, such that fk.U / is an increasing
sequence, the union of which is QM , or QM minus a point. We infer that ı is one-to-one
on QM , hence .M; g/ is conformally equivalent to a quotient 
=� , where 
 	 Sn is
an open subset and � 	 PO.1; n�1/ is a discrete subgroup acting cocompactly on
.
The normalizer of � in PO.1; nC 1/ is then always compact (and so is the conformal
group of 
=�), except when � D fidg. This forces 
 D Sn by cocompactness and
.M; g/ is conformally diffeomorphic to the round sphere Sn.

3.3 Generalizations to rank-one parabolic geometries Theorem 3.2 has
been generalized to the noncompact case, independently by Ferrand in [20] and
Schoen [36].

Theorem 3.3 ([20][36]). Let .M; g/ be a connected Riemannian manifold of dimen-
sion n � 2. If the group Conf.M; g/ does not act properly on M , then M is confor-
mally diffeomorphic to the standard sphere Sn, or to Euclidean space En.

The proofs of this theorem are much more involved than for the compact case.
The methods of Ferrand led to further generalizations of Theorem 3.3 for the group
of K-quasi conformal mappings of a Riemannian manifold (see [21]).

The PDE methods used by Schoen in [36] allowed him to obtain the same kind of
statement for strictly pseudoconvex CR structures. This is not that surprising if we
take the point of view of Cartan geometries, because the model spaces of conformal
Riemannian structures and of stricly pseudoconvex CR structures are the boundary
at infinity of real and complex hyperbolic spaces respectively, hence have similar
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properties (for instance the north-south dynamics for divergent sequences of their au-
tomorphism group). These structures fit in the larger class of Cartan geometries for
which the model space X is a quotient G=P , where G is a noncompact simple Lie
group of rank one, and P a parabolic subgroup. In other words, X is the Hadamard
boundary of a rank-one symmetric space of noncompact type. The Riemannian con-
formal case corresponds to G D PO.1; n C 1/. There are three other types of ge-
ometries involved, respectively for G D PU.1; n C 1/ (strictly pseudoconvex CR
structures), G D PSp.1; nC 1/ and G D F�20

4 . These Cartan geometries are called
rank one parabolic geometries. It turns out that the results of Obata–Ferrand–Schoen
quoted above generalize to all the geometries of this family. Indeed:

Theorem 3.4 ([24]). Let .M;S/ be a rank-one, regular, Cartan geometry modelled
on X. If the automorphism group Aut.M;S/ does not act properly on M , then M is
isomorphic, as a Cartan geometry, to the model X, or to X minus a point.

Of course, one recovers Theorem 3.3 when the model space X is the conformal
sphere Sn.

4 Lorentzian isometries

Like for conformal structures, there is no analogue of Myers–Steenrod’s theorem
in Lorentzian geometry. Recall that a Lorentzian metric g on a manifold M is
a smooth field of indefinite nondegenerate bilinear forms of signature .1; n � 1/
(namely, .�;C; : : : ;C/). Finding compact Lorentz manifolds having a noncompact
isometry group is not completely obvious, so that we begin by describing relevant
examples.

4.1 Flat tori We begin with the simplest example. Let us consider the matrix

A D
�
2 1
1 1

�

in SL.2;R/. It has two distinct eigenvalues �1 < 1 and �2 > 1, and we choose two
associated eigenvectors u and v. Let g be the translation-invariant Lorentzian metric
on R

2 given by g D dudv. Let T2 be the quotient of R2 by the lattice Z
2, equipped

with the Lorentzian metric g induced by g. Because A normalizes Z2, it induces
a Lorentzian isometry A of .T2; g/, and the group generated by A has noncompact
closure in the homeomorphisms of T2 (actually A is an Anosov diffeomorphism).

One can elaborate on this example, by considering a quadratic form g on R
n. We

assume moreover that g has Lorentzian signature, and its coefficients are rational.
We see g as a flat Lorentz metric on Rn. Again, we consider the torus Tn D Rn=Zn,
equipped with the metric g induced by g. A theorem of Borel and Harish-Chandra
ensures that the group O.g;Z/ 	 O.g/, comprising all linear transformations of O.g/
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with integral entries, is a lattice in O.g/. It is in particular noncompact. The isometry
group of .Tn; g/ coincides, as a Lie group, with the (noncompact) semi-direct product
O.g;Z/ Ë T

n.
Observe that in those examples, the identity component of the isometry group is

compact (a torus). The noncompactness comes from the discrete part of the group.

4.2 Anti-de sitter 3-manifolds Here is a more general procedure to build com-
pact pseudo-Riemannian manifolds with noncompact isometry group. Start with a Lie
group G, such that there is on g an Ad.G/� invariant, pseudo-Riemannian scalar
product �. If one pushes � by left translations on G, one gets a pseudo-Riemannian
metric g on G, which is left-invariant by construction, but also right-invariant be-
cause � is Ad.G/�invariant. Assume that G has a cocompact lattice � . Then, on
G=� , there is an induced pseudo-Riemannian metric g which is invariant for the left
action of G on G=� . We thus get a copy of G inside Iso.G=�; g/. If G cannot be
embedded in any compact Lie group, this forces Iso.G=�; g/ to be noncompact.

A nice example of this construction is obtained by choosing G to be a connected
noncompact simple Lie group and � to be the Killing form on g. The Killing form
is defined by �.X; Y / D Tr.ad.X/ ad.Y //. It is always Ad.G/�invariant, and for
simple Lie groups, it is nondegenerate. Moreover, it follows from the works of Borel
and Harish-Chandra that noncompact simple Lie groups do admit cocompact lattices,
and the above mentioned procedure works. Nevertheless, in general, the pseudo-
Riemannian metric g on G=� is not Lorentzian.

The only case leading to Lorentzian metrics is that of G D SL.2;R/ (or more
generally when g D sl.2;R/). The manifold SL.2;R/ endowed with the Killing form
is a Lorentzian manifold of constant negative curvature, and is called anti-de Sitter
space AdS3. For any cocompact lattice � 	 SL.2;R/, the quotient SL.2;R/=� ,
endowed with the induced Lorentzian metric, is a compact anti-de Sitter manifold,
the isometry group of which is noncompact.

Let us mention that when � is torsion-free, the manifold SL.2;R/=� is naturally
identified with (a double cover of) the unit tangent bundle T 1† of the hyperbolic
surface† D H

2=� . The flows ( 
e

t
2 0

0 e� t
2

!)
t2R

and ��
1 t
0 1

��
t2R

acting on the left on SL.2;R/=� can be interpreted respectively as the geodesic and
horocyclic flows on T 1†. Thus, geodesic and horocyclic flows on the unit tangent
bundle of hyperbolic surfaces are instances of isometric flows for Lorentzian metrics.
This gives an idea of the richness of Lorentzian dynamics.
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4.3 Warped Heisenberg groups Abelian and simple Lie groups are not the
only instances of Lie groups admitting a bi-invariant pseudo-Riemannian metric.
There is actually a classification of the possible Lie algebras for such groups (see
[31]).

Here is a nice class of examples which will be important for our purpose. We start
with the Heisenberg Lie algebra heis.2d C 1/, generated as a vector space by 2d C 1
elements X1; Y1; X2; Y2; : : : ; Xd ; Yd and Z, with the bracket relations

ŒXi ; Yi � D Z; ŒXi ; Z� D ŒYi ; Z� D 0 for i D 1; : : : ; d:
In the sequel, we will denote by Heis.2d C 1/ the connected simply connected Lie
group having heis.2d C 1/ for Lie algebra (it can be seen as a subgroup of upper-
triangular unipotent matrices in GL.d C 2;R/).

Let  D .m1; : : : ; md / 2 Z˙, where Z˙ denotes the set of d -uples of integers
all having the same sign. We introduce an extra element T satisfying the bracket
relations

ŒT; Xi � D miYi ; for i D 1; : : : ; d;
ŒT; Yi � D �miXi ; for i D 1; : : : ; d;

and
ŒT;Z� D 0:

The Lie algebra RË�heis.2kC1/ spanned by T;X1; : : : ; Xd ; Y1; : : : ; Yd ; Z is called
a warped Heisenberg algebra.

The derivation ad.T / can be integrated into an action of S1 by automorphisms of
heis.2d C 1/. Hence there exists a group G�, called a warped Heisenberg group,
isomorphic to a semi-direct product S1 Ë Heis.2d C 1/, having R Ë� heis.2k C 1/
for Lie algebra. Let us put on R Ë� heis.2k C 1/ a Lorentzian product � defined as
follows:

� on Span.X1; : : : ; Xd ; Y1; : : : ; Yd /, � is a Riemannian scalar product, invariant
by the action of Ad.S1/.

� the scalar product �.T;Z/ equals 1, and �.T; T / D �.Z;Z/ D 0.

� the space Span.T;Z/ is �-orthogonal to Span.X1; : : :; Xd ; Y1; : : : ; Yd /.

Then � is an Ad.G�/�invariant Lorentzian product on RË� heis.2kC1/, which can
be pushed by left translations to get a bi-invariant Lorentz metric on G�.

The last remark is that if � is a cocompact lattice in Heis.2d C 1/, then � yields
a cocompact lattice in G�. It follows that the compact manifold G�=� is endowed
with a Lorentzian metric, for which the isometry group is noncompact (the connected
component of this group is actually G�).

4.4 The classification of isometry algebras We now present the results clas-
sifying all the possible connected components for the isometry group of a com-
pact Lorentz manifold. Actually, those results focus on the possible Lie algebras
Iso.M; g/. They are due, independently and almost simultaneously, to Adams-Stuck
and Zeghib, following some pioneering works of Zimmer and Gromov.
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We already met examples of compact Lorentzian manifolds .M; g/ where the Lie
algebra Iso.M; g/ is sl.2;R/ or some warped Heisenberg algebra RË� heis.2kC1/.
These examples can be enriched by the following warped-product procedure. Assume
that .N; h/ is a Riemannian manifold, .M; g/ a Lorentzian one, and let ˇ W M !
.0;1/ be some smooth function. Then on the product manifold M �N , the warped
metric g0 D h˚ˇg is Lorentzian, and it is clear that Iso.M; h/�Iso.N; g/ is included
in Iso.M �N; g0/. Here is now the classification result we anounced at the begining
of this section.

Theorem 4.1 ([1] [46] [47]). Let .M; g/ be a compact Lorentzian manifold. Then
the Lie algebra Iso.M; g/ is isomorphic to a direct sum k˚ a˚ s, where k is either
trivial or the Lie algebra of a compact semisimple group, a is abelian, and s is either
trivial, or of one of the following types:

1. The Lie algebra sl.2;R/.

2. The Heisenberg algebra heis.2k C 1/, for some integer k � 1.

3. A warped Heisenberg algebra RË� heis.2kC 1/, for some integer k � 1, and
 2 Z˙.

Conversely, any such algebra is isomorphic to the Lie algebra of the isometry
group of some compact Lorentzian manifold.

Beyond this algebraic result, the works [1], [46] give a quite precise picture of the
geometry of the manifold .M; g/, when the factor s is nontrivial. For instance, if the
group SL.2;R/ acts faithfully and isometrically on a compact Lorentzian manifold
.M; g/, then the universal cover . QM; Qg/ is a warped product of CSL.2;R/ endowed
with the Killing form, and some Riemannian manifold .N; h/ (this case was actually
first proved by Gromov in [25]). The situation for actions of warped Heisenberg
groups is also well understood, but less easy to describe.

These results illustrate once again the principle stated in the introduction: a “large”
isometry group only occurs for very peculiar geometries.

To conclude this section about Lorentzian isometries, let us quote the following
striking result by D’Ambra, the proof of which is a very nice application of Gromov’s
ideas presented in [25]. It says that some kind of Myers–Steenrod theorem is available
in Lorentzian geometry, under some analyticity asumption, and for simply connected
manifolds.

Theorem 4.2 ([14]). Let .M; g/ be a compact, analytic, simply connected Lorentzian
manifold. Then the group Iso.M; g/ is compact.

5 Further structure results

In the previous sections, we presented very complete results answering Question 1.2
for peculiar geometric structures. Now, the question is: can we obtain more general
statements for entire classes of structures, such asG-structures, or Cartan geometries?
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The first significant theorems in this direction were obtained by Zimmer in [52],
and also Gromov in [25]. They resulted from a wonderful mix of new ideas, involving
ergodic theory and algebraic actions.

5.1 Zimmer’s embedding theorem In [52], Zimmer investigated actions of
connected, noncompact, simple Lie groups on compact manifolds, preserving a G-
structure. The reader who does not know the definition of a simple Lie group should
have in mind SL.m;R/, O.p; q/, SU.p; q/, Sp.m;R/ etc. He obtained the following
theorem, often called Zimmer’s embedding theorem.

Theorem 5.1 ([52], Theorem A). Let H be a connected, noncompact simple Lie
group. Assume thatH acts faithfully on some n-dimensional manifoldM , preserving
a G-structure. Assume also that G is an algebraic subgroup of SL0.n;R/, the group
of linear transformations of Rn with determinant˙1. Then :

1. There is a Lie algebra embedding � W h! g.

2. More precisely, there exists a linear subspace V 	 Rn, a Lie subalgebra hV 	
g 	 gl.n;R/ isomorphic to h, leaving V invariant, and such that the action of
hV on V is conjugate to the linear action of the algebra ad h on h.

Since H is a simple group, the map ad W h ! End.h/ is one-to-one. It follows
that the second point of the theorem implies the first one but, as we will see soon on
some examples, it carries more information.

In the above statement, the G-structure we consider is not required to be of finite
type. Hence, Zimmer’s result applies for instance to symplectic structures which are
not rigid in the sense we adopted in this text. Actually, the rigidity comes here from
the algebraic assumption (simplicity) on the groupH .

When the G-structure is of finite type, the automorphism group is a Lie group
(see Section 2.2). The Levi decomposition allows to write the Lie algebra aut.M/
as a semidirect product sË r, where r is the solvable radical and s is a semisimple
algebra. Zimmer’s theorem puts some restrictions on the semisimple factor s : Non-
compact factors in s must embed into g, hence cannot be “too big”, with respect to g.

5.2 Illustration in the case of isometric actions on Lorentz manifolds
Zimmer’s Theorem 5.1 predates Theorem 4.1 of almost ten years. It allows to derive
quickly results which are now particular cases of Theorem 4.1.

Let us consider a compact manifoldM endowed with a Lorentz metric g. Assume
that some noncompact, connected, simple Lie groupH acts isometrically on .M; g/.
We already saw that giving a Lorentz metric g onM amounts to giving an O.1; n�1/-
structure onM . Because O.1; n�1/ is an algebraic subgroup of SL0.n;R/, Zimmer’s
embedding theorem applies: there exists a Lie algebra embedding � W h! o.1; n�1/.

This puts rather strong restrictions on h. For instance, we infer immediately from
the theorem that SL.3;R/ cannot act isometrically on a compact Lorentz manifold.
Indeed, such an action would provide a Lie algebra embedding � W sl.3;R/ !
o.1; n � 1/. But such an embedding cannot exist, because the real rank of sl.3;R/ is
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2, whereas that of o.1; n� 1/ is 1, and the rank cannot decrease under an embedding
of Lie algebras.

Actually, the second point of Theorem 5.1 allows to determine h completely. In-
deed, it implies that the transformations of ad h are skew-symmetric with respect to
some bilinear form B on h. This form B is just obtained after identifying h with the
subspace V (given by the statement of Theorem 5.1), and restricting to V a Lorentz
scalar product which is O.1; n � 1/-invariant. In particular, the totally isotropic sub-
spaces of B have dimension at most 1. But on a simple real Lie algebra h of non-
compact type, one checks easily that any bilinear form B for which the elements
of ad h are skew-symmetric must be zero on the root spaces h˛, and two distinct root
spaces h˛; hˇ with ˛ 6D �ˇ must beB-orthogonal. As a consequence, if the isotropic
subspaces of B have dimension at most 1, h can have only two roots ˛;�˛ with 1-
dimensional root spaces. This only happens for the Lie algebra sl.2;R/. We are thus
led to the following

Corollary 5.2. Let .M; g/ be a compact Lorentz manifold and H a connected non-
compact simple Lie group acting isometrically on .M; g/. Then h is isomorphic to
sl.2;R/.

5.3 The idea of the proof of Zimmer’s embedding theorem To illus-
trate the beautiful methods introduced by Zimmer to prove Theorem 5.1, we give
an elementary exposition of the proof in the case of isometric actions on pseudo-
Riemannian manifolds.

We are thus considering .M; g/ a compact pseudo-Riemannian manifold of type
.p; q/ (without loss of generality, we will assume p � q), and H a connected non-
compact simple Lie group acting isometrically and faithfully on .M; g/.

The first important idea in Zimmer’s proof is that an action of a connected Lie
group on a manifold, when it preserves a geometric structure, often defines natural
equivariant maps to algebraic varieties (called “Gauss maps” in [25]). Let us see this
in the case of our isometric action. First, with each element X 2 h, we associate the
vector field X� onM , defined as X�.x/ D d

dt jtD0.e
tX :x/. We call S.h/ the space of

symmetric bilinear forms on h, and Gr.h/ the Grassmannian of subspaces of h.
A first map we can consider is

˛ WM ! Gr.h/;

which associates, with each point x 2 M , the Lie algebra hx of vectors X 2 h
satisfying X�.x/ D 0.

A second interesting map ˇ WM ! S.h/ is defined as follows:

ˇx.X; Y / D gx.X�.x/; Y �.x//:

These maps are natural in the sense that they are H -equivariant, where we make H
act on S.h/ and Gr.h/ through the representation Ad W H ! GL.h/.

Let us now consider the H -invariant open set 
 where the H -orbits have max-
imal dimension m0 � 1, and the map ˛ � ˇ W 
 ! Grn0

.h/ � S.h/, where
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n0 D dimH�m0. The next key idea in the proof of Zimmer is to notice that, roughly
speaking, Grn0

.h/ � S.h/ is an algebraic variety on which H acts algebraically
(through the representation Ad W H ! GL.h/). More precisely, Grn0

.h/ � S.h/
is an open subset of a projective subvariety of RPm, for some integer m, and the
H -action on it comes from that of a simple Lie subgroup of GL.m C 1;R/. Thus,
our Gauss map has transformed our initial dynamical system into an algebraic one.
Moreover, our pseudo-Riemannian metric defines a volume on M , giving volume 1
to every direct orthonormal frame (if M is not orientable, this makes only sense lo-
cally, but this still defines a smooth measure). As a consequence,H preserves a Borel
measure  onM , which is finite by compactness ofM . Pushing forward the measure
 by ˛ � ˇ, we get a (nonzero) finite Borel measure � on Grn0

.h/ � S.h/, and this
measure � is H -invariant.

Now, algebraic actions preserving a finite measure are dynamically very poor,
since from the measurable point of view, they factor through actions of compact
groups. This is the content of the following statement, often called “Borel density
theorem”.

Theorem 5.3 (Borel density theorem). Let H 	 GL.m C 1;R/ be an algebraic
subgroup. If the action of H on RPm preserves a finite Borel measure �, then there
exists a cocompact, normal, algebraic subgroupH0 	 H which acts trivially on the
support of �.

In our situation, Borel’s density theorem 5.3 says that for -almost every point
x 2 
, .�.x/; ˇ.x// is AdH -invariant. The AdH -invariance of the subspace �.x/ D
hx means exactly that the Lie algebra hx is an ideal of h. By simpleness of h, we get
hx D f0g or hx D h. Points where hx D h have orbits of dimension 0, so the defini-
tion of
 leads to hx D f0g�almost everywhere on
. Because is of full support,
this implies hx D f0g on 
. It follows that the dimension of the orbits is that of H .

We now use the fact that ˇ.x/ is AdH -invariant for �almost every x of 
,
which implies that the kernel of ˇ.x/ must be an ideal in h. We infer that ˇ.x/ is
either zero, or non-degenerate of type .p0; q0/, p0 � p, q0 � q.

1. If ˇ.x/ is zero, the restriction of g to the orbit H:x is zero as well. Because
we already noticed the dimension of H:x is that of H , we infer dimH � p
(and thus p � 3). The second point of Theorem 5.1 follows because through
the representation ad W h ! End.h/, the Lie algebra h embeds into sl.d;R/,
where d D dimH , and o.p; q/ contains a subalgebra which is conjugate in
gl.p C q;R/ to:8<

:
0
@ A 0 0
0 0pCq�2d 0
0 0 �tA

1
A ; A 2 sl.d;R/

9=
; :

2. If ˇ.x/ is nonzero, the restriction of g to the orbit H:x is non-degenerate of
type .p0; q0/. Thus p0 � p and q0 � q. The group Ad.H/, whose Lie algebra
is h by simpleness, can be seen as a subgroup of O.p0; q0/, and Theorem 5.1
follows.
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5.4 Extension of Zimmer’s result to Cartan geometries Zimmer’s Theo-
rem 5.1 does not apply to all G�structures. Indeed, the group G is required to be an
algebraic subgroup of SL0.n;R/ (the subgroup of linear transformations with deter-
minant˙1). This assumption is basically equivalent to the fact that the G�structure
defines a natural (i.e invariant by automorphisms) smooth measure on the manifold
M . That’s why some natural geometric structures do not enter in the range of appli-
cation of Theorem 5.1. Actually, the statement is even wrong for some of those struc-
tures. To check this, let us consider, for instance, the case of Riemannian conformal
structures. To have a conformal class of Riemannian metrics on some n�dimensional
manifold amounts to having an R

�C�O.n/�structure. Observe that R�C�O.n/ is not
included in SL0.n;R/. Now, the Möbius group PO.1; nC 1/ acts conformally on the
round sphere Sn. On the other hand, one can show that any Lie algebra morphism

� W o.1; nC 1/! R˚ o.n/

must be trivial, hence can never be an embedding, and the conclusions of Theorem
5.1 do not hold in this case.

In light of this example, it would be desirable to obtain statements in the spirit
of Zimmer’s embedding theorem, for structures, like conformal ones, which do not
define natural invariant measures.

Some results in this direction were proved in [6]. They yield significant informa-
tion about the automorphism groups of geometric structures which are not covered
by Theorem 5.1, like conformal, or CR, or projective structures. The class of geo-
metric structures covered by these results is no longer that of G�structures, but that
of Cartan geometries. The Cartan geometries we will consider in the following will
be modelled on homogeneous spaces X D G=P satisfying the two properties:

� The action of G on X D G=P has finite kernel.

� The image Adg P of P by the representation Ad W G ! GL.g/ is almost
algebraic, namely, it has finite index in its Zariski closure.

These restrictions are actually harmless since they are satisfied for most relevant
examples of Cartan geometries.

The main result of [6] is probably too technical to be stated here. It says roughly
that if a connected Lie group H acts on a compact manifold M preserving a Cartan
geometry S modelled on X D G=P , then the adjoint representation of most solvable
Lie subgroups S < H on h is “contained” in the adjoint representation of P on
g. Thus, the upshot is that for a Lie subgroup H < Aut.M;S/, relevant algebraic
information on H are controlled by the pair .G; P /.

Some of these algebraic information consist of numerical invariants, whose defi-
nition we recall now. If L 	 GL.m;R/ is a linear subgroup, one defines the real rank
of L, denoted rk.L/, as the maximal dimension of an abelian subgroup of L made of
R�split transformations. The algebraic rank rkalg.L/ is the maximal real rank of the
Zariski closure of an abelian subgroup of L made of R�split transformations. One
always has rk.L/ � rkalg.L/, and the inequality can be strict (see examples in Section
5.5 below). The nilpotency index of L, denoted by nilp.L/ is the maximal nilpotency
index of a connected nilpotent Lie subgroup of L.
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Theorem 5.4 ([6], Theorems 1.3 and 1.5). Let .M;S/ be a Cartan geometry mod-
elled on the homogeneous space X D G=P . Let H be a connected Lie subgroup of
Aut.M;S/. Assume that the manifold M is compact. Then

1.
rkalg.AdH/ � rk.Adg P /

and
nilp.AdH/ � nilp.Adg P /:

2. If moreover X D G=P is a parabolic geometry, if S is regular, and if the
equality

rk.AdH/ D rk.Adg P /

holds, then .M;S/ is isomorphic, as a Cartan geometry, to a quotient �n QX,
for some discrete group � 	 QG.

We refer to Section 2.1 for the definition of parabolic geometries. The regular-
ity condition involves conditions on the curvature, and is harmless since it is part
of the normalization made on the Cartan connection to ensure uniqueness when the
equivalence problem is solved.

The second point of the theorem might be compared to Theorem 3.2. It is another
nice illustration of the principle stated in the introduction, that rigid geometric struc-
tures with large automorphism group should be very peculiar. Here, the largeness of
the automorphism group is expressed by the fact that Aut.M;S/ has the maximal real
rank allowed.

Remark 5.5. If H is not assumed to be connected, the inequality

rkalg.AdH/ � rk.Adg P /

is still true, provided the kernel of the morphism Ad W H ! GL.h/ is amenable

5.5 Illustrations We are going to illustrate Theorem 5.4, by considering actions
on several geometric structures. We will be interested in the following groups:

� For n � 2, we consider the subgroup of affine transformations of Rn given by
�n D SL.n;Z/ Ë R

n. The real rank rk.Ad�n/ is zero, but its algebraic rank
rkalg is n � 1.

� For n � 2, we introduceRn D LnËR
n, the subgroup of affine transformations

of Rn, for which

Ln D

8̂<
:̂
0
B@
et1 0 0

0
: : : 0

0 0 etn

1
CA ; .t1; : : : ; tn/ 2 R

n

9>=
>; :

The group Rn is a semi-direct product Rn Ë R
n. The real rank rk.Ad.Rn// as

well as the algebraic rank rkalg.Ad.Rn// are equal to n.
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� For every n � 2, the group Un of unipotent upper-triangular matrices in
GL.n;R/ is nilpotent, with index of nilpotency equal to n � 1. The index
nilp.Ad.Un// is equal to n � 2.

We can now state some consequences of the previous theorem.

1. Let .M; g/ be a compact pseudo-Riemannian manifold of type .p; q/, where
1 � p � q. Pseudo-Riemannian structures of type .p; q/ are Cartan geome-
tries whose model space is Ep;q D G=P where G D O.p; q/ Ë RpCq and
P D O.p; q/. The real rank of Adg P is p, and its index of nilpotency is
2p � 1. We knew thanks to Zimmer’s Theorem 5.1 that SL.m;R/ cannot act
isometrically on .M; g/ if m � p C 2. Theorem 5.4 and Remark 5.5 yield
the same conclusion for the group �m. In the same way, there is no isometric
action of Rm on .M; g/ as soon as m � p C 1, and the same is true for Um if
m � 2p C 2.

2. When p C q � 3, the conformal class of the type .p; q/ pseudo-Riemannian
manifold .M; g/ defines a unique normal Cartan geometry modelled on the
space Einp;q D O.p C 1; q C 1/=P (where P is the stabilizer of an isotropic
line in O.p C 1; q C 1/, see Section 2.1). One computes rk.Adg P / D p C 1
and nilp.Adg P / D 2p C 1.

Hence, for instance, a Lie groupH acting conformally on a compact Lorentzian
manifold must satisfy rk.AdH/ � 2. We thus infer that SL.4;R/, which
has real rank 3, does not admit such a conformal action. Actually, this is
also true for SL.3;R/, even though this group has rank 2. Indeed, by the
second point of Theorem 5.4, a conformal action of SL.3;R/ on a compact
Lorentzian manifold can only occur on a quotient �neEin1;n�1, which is con-
formally flat. Hence, such an action would provide an embedding of Lie alge-
bras sl.3;R/! o.2; n/, and it is rather easy to check that this is impossible.

Using the bounds provided by Theorem 5.4 and Remark 5.5, we infer more
generally that there does not exist any conformal action of �m on a compact
type .p; q/manifold .M; g/ as soon asm � pC3. The same conclusion holds
for Rm when m � p C 2, and for Um if m � 2p C 3.

3. As a last example, let us consider a compact manifoldM of dimension n � 2,
endowed with a linear connection r. This connection defines a unique Cartan
geometry modelled on the affine space An D G=P , whereG D GL.n;R/ËR

n

and P D GL.n;R/. One checks that rk.AdP / D n, and nilp.AdP / D n� 1.
We infer that wheneverm � nC2, neither�m, norUm can act onM preserving
r. The same conclusion holds for Rm if m � nC 1.
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1 Introduction

There are well-known relations between the three constant-curvature geometries, and
there are known instances in which a sequence of geometries of nonzero curvature
converges to the Euclidean geometry. For instance, it is well known that the geometry
of a sequence of spheres whose radii tend to infinity converges to the geometry of the
Euclidean plane.1 Likewise, a sequence of hyperbolic planes with curvature tending
to 0 converges to the Euclidean plane. Lobachevsky, although he did not have the no-
tion of curvature for his geometry, knew that hyperbolic geometry becomes Euclidean
at the infinitesimal level, and he checked this fact whenever he found an occasion for
doing so. He noticed that the first-order approximations of the non-Euclidean trigono-
metric formulae that he obtained are the usual formulae of Euclidean geometry, see
e.g. his Pangeometry [15]. We can also mention Gauss, who wrote to his friend
F. A. Taurinus on November 8, 1824: “The assumption that in a triangle the sum of
three angles is less than 180o leads to a curious geometry, quite different from ours,
but thoroughly consistent, which I have developed to my entire satisfaction, so that I
can solve every problem in it with the exception of the determination of a constant,
which cannot be designated a priori. The greater one takes this constant, the nearer

1The one-dimensional aspect was known since ancient times, even though the notion of convergence was not
rigorously defined. For instance, Kepler already thought of a straight line as a circle whose center is at infinity,
cf. [14], p. 290. Before Kepler, Nicholas of Cusa, in his De docta ignorantia (1440) described how a circle with
increasing radius tends to a straight line.
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one comes to Euclidean geometry, and when it is chosen infinitely large, the two
coincide.”2

In this paper, we relate the three geometries of constant curvature by constructing
a continuous transition between them. This is done in the setting of geometry as
a transformation group, as expressed in Klein’s Erlangen program. We construct
a fiber space E ! Œ�1; 1�, where the fiber above each point t 2 Œ�1; 1� is a two-
dimensional space of constant curvature which is positive for t > 0 and negative for
t < 0 and such that when t tends to 0 from each side, the geometry converges to
the geometry of the Euclidean plane. Making the last statement precise will consist
in showing that segments, angles, figures and several properties and propositions of
the two non-Euclidean geometries converge in some appropriate sense to those of the
Euclidean one. We say that the geometries transit. At the level of the basic notions
(points, lines, distances, angles, etc.) and of the geometrical properties of the figures
(trigonometric formulae, area, etc.), we say that they transit in a coherent way. This
is expressed by the existence of some analytic sections of the fiber space E which
allows us to follow these notions and properties. The group-theoretic definitions of
each of the primary notions of the geometries of constant curvature (points, lines,
etc.) make them transit in a coherent way.

The idea of transition of geometries was already emitted by Klein in �15 of his
paper [12] (see the comments in Chapter 5 of this volume [2]). We note however that
the abstract theoretical setting of transformation groups was not really developed at
the time Klein wrote the paper [12]. The notion of “classical group”, which is prob-
ably the most convenient setting for the description of these groups, was developed
later, in works of Weyl [22], Dieudonné [5] and others.

The construction we describe here is developed in Chapter 9 of our Notes on
hyperbolic geometry [1]. We review the basic ideas and we add to them some new
results and comments. Beyond the fact that it establishes relations between the three
classical geometries, this theory highlights at the same time the important notions of
families and of deformations.

2 The fiber space E
We work in a fiber space over Œ�1; 1� where the fibers above each point are built out
of the groups of transformations of the three geometries. Each fiber is a geometry
of constant curvature considered as a homogeneous space in the sense of Lie group
theory, that is, a space of cosetsG=H0 whereG is a Lie group – the orthogonal group
of some quadratic form – and H0 the stabilizer of a point. This is an example of the
classical concept of Klein geometry, see e.g. [7] in this volume.

When the parameter t 2 Œ�1; 1� is negative, the homogeneous space is the hy-
perbolic plane of a certain constant negative curvature. When it is positive, the ho-

2The translation is from Greenberg [9]. Gauss’s correspondence is included in Volume VIII of his Collected
Works [8].
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mogeneous space is the sphere (or the elliptic plane) of a certain constant positive
curvature. When the parameter is zero, the homogeneous space is the Euclidean
plane. We can define points, lines and other notions in the geometry using the under-
lying group. For instance, a point will be a maximal abelian compact subgroup of G
(which can be thought of as the stabilizer group of the point in the ambient group).
The space of the geometry is the set of points, and it is thus built out of the group.
A line is a maximal set of maximal abelian compact subgroups having the property
that the subgroup generated by any two elements in this set is abelian. Other basic
elements of the geometry (angle, etc.) can be defined in a similar fashion. This is in
the spirit of Klein’s Erlangen program where a geometry consists of a group action.
In this case, the underlying space of the geometry is even constructed from the ab-
stract group. The definitions are made in such a way that points, distances, angles,
geometrical figures and trigonometric formulae vary continuously from hyperbolic to
spherical geometry, transiting through the Euclidean, and several phenomena can be
explained in a coherent manner.

To be more precise, we consider the vector spaceR3 equipped with a basis, and we
denote the coordinates of a point p by .x.p/; y.p/; z.p// or more simply .x; y; z/.

We recall that the isometry groups of the hyperbolic plane and of the sphere are
respectively the orthogonal groups of the quadratic form

.x; y; z/ 7! �x2 � y2 C z2

and
.x; y; z/ 7! x2 C y2 C z2:

Introducing a nonzero real parameter t does not make a difference at the level of the
axioms of the geometries (although it affects the curvature): for any t < 0 (respec-
tively t > 0) the isometry group of the hyperbolic plane (respectively the sphere) is
isomorphic to the orthogonal group of the quadratic form

qt W .x; y; z/ 7! tx2 C ty2 C z2: (8.1)

We wish to include the Euclidean plane in this picture.
The first guess to reach the Euclidean plane is to give the parameter t the value 0.

This does not lead to the desired result. In fact, although the orthogonal groups of the
quadratic forms qt , for t > 0 (respectively for t < 0) are all isomorphic, they are not
uniformly bounded in terms of t , and when t ! 0, their dimension blows up. Indeed,
when t ! 0 from either side, the quadratic form qt reduces to

.x; y; z/ 7! z2

whose orthogonal group is much larger than the isometry group of the Euclidean
plane.

Thus, an adjustment is needed. For this, we shall introduce the notion of “co-
herent element”. This will make the Euclidean plane automorphism group (and the
Euclidean plane itself) appear in a continuous way between the hyperbolic and spher-
ical automorphism group (respectively the hyperbolic plane and the sphere).
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We now define the fiber space E , equipped with its fibration

E ! Œ�1; 1�:
The fiber Et above each t 2 Œ�1; 1� will be a space of constant positive curvature
t2 for t > 0 and of constant negative curvature �t2 for t < 0, such that when t
converges to 0 from either side, Et converges to the Euclidean plane.

We explain this now. It will be useful to consider the elements of the space Et as
matrices, and when we do so we shall denote such an element by a capital letter A.

Let J 	 GL.3;R/ � Œ�1; 1� ! Œ�1; 1� be the fibration whose fiber Jt above
t is the subgroup of GL.3;R/ consisting of the stabilizers of the form qt . Finally,
let I 	 J be defined by taking fiberwise the connected component of the identity
element in the orthogonal group of the quadratic form qt , for each t 2 Œ�1; 1�.

In other words, for every t 6D 0, It is the orientation-preserving component of the
orthogonal group of the quadratic form qt . It is a Lie group of dimension 3. However,
as we already noticed, I0 is a Lie group of dimension 6. It is the matrix group

I0 D fA D .Aij / 2 GL.3;R/ j A3;1 D A3;2 D 0; A3;3 D 1; det.A/ > 0g:
This is the group of matrices of the form0

@ a b e
c d f
0 0 1

1
A

with ad � bc > 0. The fact that the determinant is positive is a consequence of the
orientation-preserving assumption. Thus, I0 is the usual matrix representation group
of the orientation-preserving group of affine transformations of R2. Equivalently, it is
the group of matrices preserving the .x; y/-plane in R3. (One can deduce this fom the
fact that the affine group is the subgroup of the group of projective transformations
that preserve a hyperplane in projective space.) This shows again that I0 is not iso-
morphic to the group of orientation-preserving Euclidean motions of the plane. We
shall reduce the size of I0, by restricting the type of matrices that we consider.

Definition 2.1 (Coherent element). An element A of I0 is said to be coherent if for
all i and j satisfying 1 � i; j � 3, there exists an analytic function Ai;j .t/ such that
for each t 2 Œ�1; 1� the matrix At D

�
Ai;j .t/

�
belongs to It , and A0 D A.

3 The space of coherent elements

We denote by E 	 I 	 GL.3;R/ � Œ�1; 1� the set of coherent elements. For each
t 2 Œ�1; 1� we denote by Et the set of coherent elements that are above the point t .

From the definition, we have Et D It for all t 6D 0. We now study E0.
The coherent elements of I0 form a group and they have important features. We

start with the following:
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Proposition 3.1. If A 2 I0 is coherent, then det.A/ D 1.

Proof. For t 6D 0, we have det.A/ D 1 since A is an orthogonal matrix of a non-
degenerate quadratic form. The result then follows from the definition of coherence
and from the fact that the map t 7! det.At / is continuous. �

We also have the following:

Proposition 3.2. An element A 2 I0 is coherent if and only if A is an orientation-
preserving motion of the Euclidean plane.

Proof. Let A 2 I0 be a coherent element. From the definition, we have A D
limt!0A.t/, with A.t/ 2 It , t > 0. Thus, the 9 sequences Aij .t/, for 1 � i; j � 3,
converge and therefore they are bounded. For t 6D 0, since A.t/ preserves the
quadratic form qt , it also preserves the form 1

t
qt . For i D 1; 2; 3, let Ai.t/ de-

note the i -th column of A.t/. We show that for i; j < 3, the 1
t
qt -scalar product of

Ai .t/; Aj .t/ is the i; j -th coefficient of the Kronecker delta function.
We have

1

t
qt .A/ D

�
A11.t/ A21.t/ A31.t/

�0@ 1 0 0
0 1 0

0 0 1
t

1
A
0
@ A11.t/
A21.t/
A31.t/

1
A

D A11.t/2 C A21.t/2 C 1

t
A31.t/

2:

Since A.t/ preserve 1
t
qt , we get A11.t/2 C A21.t/

2 C 1
t
A31.t/

2 D 1 for all
t 6D 0. Since the sequencesAij .t/ converge, we obtain limt!0A31.t/ D 0, therefore
the coherence property imposes A31.0/ D 0. Now we use the fact that the section
A31.t/ is differentiable (recall that by coherence, it is even analytic). This gives
A31.t/ D 0 C �t C O.t2/, therefore 1

t
A31.t/

2 D �2t C O.t3/, which implies
limt!0

1
t
A31.t/

2 D 0. We get A11.0/2 C A21.0/2 D 1.
In the same way, we prove that A12.0/2 C A22.0/2 D 1 and A11.0/A12.0/ C

A21.0/A22.0/ D 0.
It follows that the first principal 2-bloc ofA is an orthogonal matrix, which implies

that E0 is a direct isometry group of the Euclidean plane. In other words, the 2 � 2
matrix �

A11 A12
A21 A22

�

preserves the standard quadratic form on R
2. Thus, it is an element of the Euclidean

rotation group SO.2/. �

Note.— In the proof of the preceding proposition, we used the fact that the coherence
property imposes that the sectionsAij are differentiable. There is another proof in [1]
(Proposition 2.2) which only uses the existence of sections that are only continuous.
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The set of coherent elements of I0, being the group of orientation-preserving
motions of the Euclidean plane, is the group we are looking for.

From now on, we use the notation I0 for the subgroup of coherent elements in-
stead of the previously defined group I0. Thus, in the following, for each t 2 Œ�1; 1�,
any element of It is coherent.

The space of coherent elements (for variable t) is not a locally trivial fiber bundle
(for instance, the topological type of the fiber It is not constant; it is compact for
t > 0 and noncompact for t < 0). However this space has nice properties which
follow from the fact that it has many continuous (and even analytic) sections.

4 The algebraic description of points and lines

For every t 2 Œ�1; 1�, we define Et as the set of maximal abelian compact subgroups
of It . An element of Et is a point of our geometry. Note that any maximal abelian
compact subgroups of It is isomorphic to the circle group SO.2/. With this in hand,
a coherent family of points in the fiber space .Et / is a coherent family of maximal
abelian compact subgroups of It . This is a family depending analytically on the
parameter t . We can also consider coherent families of pairs (respectively triples, etc.)
of points. This defines the segments (respectively triangles, etc.) of our geometries.
We can study the corresponding distance (respectively area, etc.) function of t defined
by such a pair or triple, in algebraic terms.

For each p 2 Et , we denote by Kp 	 It the maximal subgroup that defines p.
Since Kp is a group isomorphic to the circle group SO.2/, for each p 2 Et , there
exists a unique order-two element sp 2 Kp . We shall make use of this element. In
the circle group SO.2/, this corresponds to the rotation of angle � . We call sp the
reflection, or involution in It , of center p. In this way, any point in Et is represented
by an involution. For each t 6D 0, an involution is a self-map of the space of our
geometry (the sphere or the hyperbolic plane) that fixes the given point, whose square
is the identity, and whose differential at the given point is �Id.

This algebraic description of points in Et as involutions has certain advantages.
In particular, we can define compositions of involutions and we can use this operation
to describe algebraically lines and other geometric objects in Et .

A line in Et is a maximal subset L of Et satisfying the following property:

(*) The subgroup of It generated by the all elements of the form spsp0 ,
for p; p0 2 L, is abelian. In the the case t D 0, we ask furthermore that
the group is proper. (For t 6D 0, this is automatic).

In other words, each time we take four points sp1
; sp2

; sp3
; sp4

in Et represented
by involutions, then, sp1

sp2
commutes with sp3

sp4
.

Given two distinct points in Et , there is a unique line joining them; this is the
maximal subset L of Et containing them and satisfying property (*) above.

The group It acts by conjugation on Et and by reflections along lines.
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With these notions of points and lines defined group-theoretically, one can check
that the postulates of the geometry can be expressed in group theoretic terms: for
instance, any two distinct points belong to a line; two lines intersect in at most one
point. (For this to hold, in the case t > 0, one has to be in the projective plane and
not on the sphere.)

We now introduce circles. Let s be a point represented by a subgroup Kp and an
involution sp. Any element � in Kp acts on the space of points Et by conjugation:

.�;Kp/ 7! �Kp�
�1:

A circle of center p in our geometry is an orbit of such an action. For t > 0 and
for every point p, among such circles, there is one and only one circle centered at p
which is a line of our geometry.

A triangle in our space is determined by three distinct points with three lines
joining them pairwise together with the choice of a connected component of the com-
plement of these lines which contains the three given points on its boundary. The last
condition is necessary in the case of the sphere, since, in general, three lines divide
the sphere into eight connected components.

Let us consider in more detail the case t > 0. This case is particularly interesting,
because we can formulate the elements of spherical polarity theory in this setting. We
work in the projective plane (elliptic space) rather than the sphere. In this way, the set
of points of the geometry Et (t > 0) can be thought of as the set of unordered pairs
of antipodal points on the sphere in the 3-dimensional Euclidean space .R3; qt /.

To each line in Et is associated a well-defined point called its pole. In algebraic
terms (that is, in our description of points as involutions), the pole of a line is the
unique involution sp which, as an element of It , fixes globally the line and does not
belong to it.

Conversely, to each point p, we can associate the line of which p is the pole. This
line is called the equator of p. There are several equivalent algebraic characteriza-
tions of that line. For instance, it is the unique line L such that for any point q on L,
the involution sq fixes the point p. In other words, the equator of a point sp is the set
of points q 6D p satisfying sq.p/ D p.3

This correspondence between points and lines is at the basis of duality theory.
If two points p and q in Et are distinct, the product of the corresponding involu-

tions sp and sq is a translation along the line joining these points. More concretely,
spsq is a rotation along the line in 3-space which is perpendicular to the plane of
the great circle determined by p and q. This line passes through the pole sN of the
great circle, and therefore the product spsq commutes with the pole sN (seen as an
involution).

Given p 2 Et , the equator of p is the set of all q 2 Et whose image under the
stabilizer of p in It is a straight line.

In spherical (or elliptic) geometry, a symmetry with respect to a point is also
a symmetry with respect to a line. This can be seen using the above description

3This correspondence between poles and lines holds because we work in the elliptic plane, and not on the
sphere. In the latter case, there would be two “poles”, which are exchanged by the involution sq associated to
a point q on the line.
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of points as involutions. From the definition, the involution corresponding to the
pole of a line fixes the pole, but it also fixes pointwise the equator. The pole can be
characterized in this setting as being the unique isolated fixed point of its involution.
The set of other fixed points is the equator. Thus, to a line in elliptic geometry is
naturally associated an involution.

We can use polarity to define perpendicularity between lines: Consider two lines
L1 and L2 that intersect at a point p. Then L1 and L2 are perpendicular if the pole
of L1 belongs to L2. This is equivalent to the fact that the polar dual to L2 belongs
to L1. This also defines the notion of right angle.

In what follows, we shall measure lengths in the geometryEt for t > 0. We know
that in spherical (or elliptic) geometry, there is a natural length unit. The length unit
in this space can be taken to be the diameter of a line (all lines in that geometry are
homeomorphic to a circle), or as the diameter of the whole space (which is compact).
We can also use the correspondence between lines and poles and define a normalized
distance on Et , by fixing once and for all the distance from a point to its equator. We

normalize this distance by setting it equal to
�

2
p
t

. (Remember that each space Et ,

for t > 0, is the sphere of constant curvature t2.)
After defining the distance on Et , we can check that the segment which joins

a pole to a point on its equator is the shortest path to the equator.

5 Transition of points, lines, distances,
curvature and triangles

Before we continue, let us summarize what we did. We chose a fixed basis for R3.
We defined the space E D .Et/t2Œ�1;1
 of coherent elements as a subset of a space of
matrices, equipped with a map onto Œ�1; 1�. A point p D .x; y; z/ in R3 equipped
with a basis gives a group-theoretically defined point in Et for every t 2 Œ�1; 1�
with t 6D 0, namely, the stabilizer of the vector whose coordinates are .x; y; z/ in the
group of linear transformations of R3 preserving the form qt . Using the coherence
property, we extended to t D 0, and for any t 2 Œ�1; 1�, we defined a point At in
Et as a stabilizer group under the action of the group It , namely, a maximal abelian
subgroup Kt of It . The family At , t 2 Œ�1; 1� is a coherent family of points. This
group-theoretic definition of points allows the continuous transition of points in the
space E . Likewise, the group-theoretic definition of lines makes this notion coherent
transit from one geometry to another.

Now we introduce the notion of angle. We want a notion that transits between the
various geometries. This can also be done group-theoretically in a coherent manner.
There are various ways of doing it, and one way is the following. We start with the
group-theoretic description of a point as a maximal compact abelian subgroup (the
“stabilizer” of the point). Such a subgroup is isomorphic to a circle group. But the
circle group is also the set of all oriented lines starting at the given point. It is equipped
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with its natural Haar measure, which we normalize so that the total measure of the
circle is 2� . This gives a measure on the set of oriented lines. From these measures,
we obtain the notion of angle at every point. It is also possible to give a coherent
definition of an angle by using a formula, and we shall do this in �7.

Now we consider transition of distances.
To measure distances between points, we use a model for the space Et for each

t 2 Œ0; 1�. We take the unit sphere St , that is, the space of vectors in R
3 of norm one

with respect to the quadratic form qt . This is the subset defined by

St D f.x; y; z/ j tx2 C ty2 C z2 D 1g 	 R
3: (8.2)

We take the quotient of this set by the action of Z2 that sends a vector to its opposite.
Note that the unit sphere St (before taking the quotient) is connected for t > 0, and it
has two connected components for t < 0. After taking the quotient, all spaces become
connected. The group of transformations of R3 which preserve the quadratic form qt
acts transitively on St=Z2 for each t . For t D 0, the unit sphere (before taking the
quotient) is defined by the equation z2 D 1, and it has two connected components,
namely, the planes z D 1 and z D �1.

In this way, the elements of the geometries Et can be seen either algebraically as
cosets in a group (the isometry group modulo the stabilizer of a point) or, geometri-
cally, as elements of the unit sphere quotiented by Z2.

Now we define distances between pairs of points in each Et and then we study
transition of distances.

For t 6D 0, we use the angular distance in Et . To do so, for each t 6D 0, we let ˇt
be the bilinear form associated to the quadratic form qt , that is,

ˇt .x; y/ D qt .x C y/ � qt .x/ � qt .y/
2

:

We set, for every xt and yt in Et ,

wt .xt ; yt / D arccos
ˇt .xt ; yt/p
qt .xt/

p
qt .yt/

(8.3)

We callwt .xt ; yt/ the angular distance between the points xt and yt . For each t 6D 0,
the angular distance can be thought of as being defined on St=Z2, but also on the 2-
dimensional projective plane, the quotient of R3nf0g=Z2 by the nonzero homotheties.
As a distance on the space Et , we shall take wt multiplied by a constant ct that we
determine below. Note that although Equation (8.2) describes an ellipsoid in the
Euclidean orthonormal coordinates .x; y; z/, this surface, equipped with this angular
metric induced from the quadratic form, is isometric to a round sphere.

For each t 6D 0, equipped with the normalized distance function ctwt , the point
set Et becomes a metric space. Its points and its geodesics coincide with the group-
theoretically defined points and lines that we considered in �1. This can be deduced
from the fact that the isometry group of the space acts transitively on points and on
directions, and that both notions (the metric and the group-theoretic) are invariant by
this action. There are other ways of seeing this fact.
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x

y

t > 0 t < 0

t D 0

Figure 8.1.

We can draw a picture of St for each t 2 Œ0; 1�. In dimension 2, this is represented
in Figure 8.1. To get the 3-dimensional picture, this figure has to be rotated in space
around the y-axis.

Any vector in R
3 defines a point in each geometry Et by taking the intersection

of the ray containing it with St (or in the quotient of this intersection by Z2). This
is represented in Figure 8.2, in which the vector is denoted by P , and where we see
three intersection points with the level surfaces St : for t > 0, t D 0 and t < 0. Note
that the two points with Cartesian coordinates .0; 0; 1/ and .0; 0;�1/ belong to all
geometries (they belong to St for any t 2 Œ�1; 1�). We shall use this in the following
discussion about triangles, where some vertices will be taken to be at these points,
and this will simplify the computations.

We now discuss transitions of distances.
We want the distance between two points in the geometry E0 to be the limit as

t ! 0 (from both sides, t > 0 and t < 0) of the distance in Et between corre-
sponding points (after normalization). The next proposition tells us how to choose
the normalization factor ct .

Let A and B be two points in R3. We have a natural way of considering each of
these points to lie in Et , for every t 2 Œ�1; 1�. Let us denote by At ; Bt the corre-
sponding points.

Proposition 5.1. The limit as t ! 0; t > 0 (respectively t < 0), of the distance
from At to Bt inEt normalized by the factor 1=

p
t is equal to the Euclidean distance

between A0 and B0.

Using this result, we shall define the distance between the points A and B in E0
in such a way that the distances in Proposition 5.1 vary continuously for t 2 Œ�1; 1�.
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x

y
t > 0

Figure 8.2.

Proof. For t 2 Œ�1; 1�, let a D .0; 0; 1/ 2 R
3 and consider the coherent family of

points At 2 Et ; t 2 Œ�1; 1� represented by a. For x 2 R, let Bxt 2 Et , t 2 Œ�1; 1� be
the coherent family of points represented by the stabilizer of the vector bx D .x; 0; 1/
of R3. The family ŒAt ; Bxt �, t 2 Œ0; 1� is a coherent family of segments in E .

We start with t > 0. We compute the limit as t ! 0; t > 0, of the distance from
At to Bxt in Et , normalized by dividing it by

p
t . We have

qt .a/ D 1;
qt .b

x/ D tx2 C 1
and

ˇt .a; b
x/ D 1:

We use the angular distance fromAt toBxt , measured with qt , t > 0. By Equation
(8.3), we have

wt .At ; ˇ
x
t / D arccos

 
ˇt.a; b

x/p
qt .a/

p
qt .bx/

!

D arccos

�
1p

tx2 C 1
�

D j arctan
�p

tx
	
j

D jptx � 1
3

p
t3x3 C 1

5

p
t5x5 � : : : j
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Taking ct D 1=
p
t as a factor for distances in Et , the distance ctwt between the two

points becomes

Dt.At ; B
x
t / D

1p
t

arccos

�
1p

tx2 C 1
�
D jx � 1

3
tx3 C 1

5
t2x5 � : : : j: (8.4)

The limit as t ! 0, t > 0, of Dt.At ; Bxt / is jxj, which is what the distance from
A0 to Bx0 in E0 ought to be. �

Thus, we define the distance Dt on each Et to be the angular distance wt given
in (8.3) divided by

p
t . In this way, the distance function transits.

The fact that points and distances transit between the various geometries implies
that triangles also transit. We already noted that angles also transit. From this, we get
several properties. For instance, since angle bisectors may be defined using equidis-
tance, the following property transits between the various geometries:

Proposition 5.2. The angle bisectors in a triangle intersect at a common point.

The reader can search for other properties that transit between the various geome-
tries.

Curvature is also a coherent notion. Indeed, curvature in spherical and in hyper-
bolic geometry is defined as the integral of the excess (respectively the defect) to
two right angles of the angle sum in a triangle (and to a multiple of a right angle for
more general polygons). This notion transits through Euclidean geometry, which is
characterized by zero excess to two right angles. One can make this more precise,
by choosing a triangle with fixed side lengths – for instance with three sides equal to
a quarter of a circle – and making this triangle transit through the geometries.

6 Transition of trigonometric formulae

The trigonometric formulae, in a geometry, make relations between lengths and an-
gles in triangles. They are at the bases of the geometry, since from these formulae,
one can recover the geometric properties of the space. Let us recall the formal simi-
larities between the trigonometric formulae in hyperbolic and in spherical geometry.
One example is the famous “sine rule”, which is stated as follows:

For any triangle ABC , with sides (or side lengths) a; b; c opposite to the vertices
A;B;C , we have, in Euclidean geometry:

a

sinA
D b

sinB
D c

sinC
;

in spherical geometry:
sin a

sinA
D sin b

sinB
D sin c

sinC
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and in hyperbolic geometry:

sinh a

sinA
D sinh b

sinB
D sinh c

sinC
:

Thus, to pass from the Euclidean to the spherical (respectively the hyperbolic),
one replaces a side length by the sine of the side length (respectively the sinh of the
length). Since using the sine rule one can prove many other trigonometric formulae,
it is natural to expect that there are many occurrences of trigonometric formulae in
non-Euclidean geometry where one replaces the circular functions of the side lengths
(sin, cos, etc.) by the hyperbolic function of these side lengths, in order to get the
hyperbolic geometry formulae from the spherical ones. Examples are contained in
the following table. They concern a triangle ABC having a right angle at C :

Hyperbolic Euclidean Spherical

cosh c D cosh a cosh b c2 D a2 C b2 cos c D cos a cos b

sinh b D sinh c sinB b D c sinB sin b D sin c sinB

tanh a D tanh c cosB a D c cosB tan a D tan c cosB

cosh c D cotA cotB 1 D cotA cotB cos c D cotA cotB

cosA D cosha sinB cosA D sinB cosA D cos a sinB

tanh a D sinh b tanA a D b tanA tan a D sin b tanA

In this table, the Euclidean formulae in the middle column are obtained by taking
Taylor series expansions of any of the two corresponding non-Euclidean ones, for
side lengths tending to 0. This is a consequence of the fact that the spherical and the
hyperbolic geometries become Euclidean at the level of infinitesimal triangles.

The transitional geometry sheds a new light on the analogies between the trigono-
metric formulae.

First, we must recall that the above formulae are valid for spaces of constant cur-
vatures �1, 0 and 1. In a geometry Et , with t 6D 0, one has to introduce a parameter
t in the above trigonometric formulae. For instance, for a right triangle ABC with
right angle at C , we have, in spherical geometry (t > 0):

cos
p
tc D cos

p
ta cos

p
tb

and in hyperbolic geometry (t < 0):

cosh
p�ta D cosh

p�tb cosh
p�tc:

Now we can study the transition of this formula, called the Pythagorean theorem.4

We first study the transition of a triangle.

4By extension from the Euclidean case, a Pythagorean theorem, in a certain geometry, is a formula that
makes relations between the edges and angles of a right triangle.
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For t 2 Œ�1; 1�, let a D .0; 0; 1/ 2 R3 and consider the coherent family of
points At 2 Et ; t 2 Œ�1; 1� represented by the vector a. Take a real number x. For
any t 2 Œ0; 1�, let Bxt 2 Et and C xt 2 Et be the two coherent families of points
represented by the stabilizers in It of the vectors bx D .x; 0; 1/ and cx D .0; x; 1/ of
R
3. The family�t .x; y/ D .At ; Bxt ; C yt /, t 2 Œ0; 1� is a coherent family of triangles.

The triangle �0.x; y/ is a right triangle at A, with catheti ratio x=y. To see that each
triangle �t .x; y/ is right, we note that if we change B into �B , we do not change
the angle value. (Recall the definition of the angle measure as the Haar measure
on SO.2/.) Therefore there is a transformation of the space Et that belongs to our
isometry group and that sends this angle to its opposite. Therefore the angle is equal
to its symmetric image, and therefore it is right. We saw (proof of Proposition 5.1)
that in the geometry Et , the distance between the two points At and Bxt is given by

Dt .At ; B
x
t / D

1p
t

arccos

�
1p

tx2 C 1
�
: (8.5)

Likewise, the distance between the two points At and C yt is equal to

Dt .At ; C
y
t / D

1p
t

arccos

 
1p

ty2 C 1

!
: (8.6)

In the geometry E0, the distance from A0 to C y0 is equal to jyj.
We need to know the distance in E0 between the points Bx0 and C y0 .
The angular distance from Bxt to C yt , measured with qt , t > 0, is

wt .B
x
t ; C

y
t / D arccos

 
ˇt.b

x; cy/p
qt .bx/; qt.cy/

!

D arccos

 
1p

tx2 C 1pty2 C 1
!

D arccos

 
1p

t2x4y4 C tx2 C ty2 C 1

!
:

Up to higher order terms, this expression is equal top
t2x4y4 C tx2 C ty2:

We collect the information in the following lemma, using the fact that in the co-
herent geometry E0, distances are obtained as a limit of normalized distances in Et
for t > 0 (or t < 0).
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Lemma 6.1. In the geometry Et with t > 0, we have

Dt .At ; B
x
t / D

1p
t

arccos

�
1p

tx2 C 1
�
;

Dt .At ; C
y
t / D

1p
t

arccos

 
1p

ty2 C 1

!
;

and

Dt .B
x
t ; C

y
t / D

1p
t

arccos

 
1p

tx2 C 1pty2 C 1
!
:

In the coherent geometry E0, we have

lim
t!0

Dt .At ; B
x
t / D D0.A0; Bx0 / D jxj;

lim
t!0

Dt .At ; C
x
t / D D0.A0; C y0 / D jyj

and
lim
t!0

Dt .Bt ; C
x
t / D D0.Bx0 ; C y0 / D

p
x2 C y2:

Using this lemma, we now show that the Euclidean Pythagorean formula in E0 is
a limit of the Pythagorean formula in Et for t > 0.

Let x and y be real numbers and let t > 0. In the triangle�t .x; y/, the lengths of
the three sides (measured in Et ) are the angular distances

p
tDt.At ; B

x
t /,p

tDt.At ; C
y
t / and

p
tDt .Cyt ; B

x
t /. The first natural attempt is to write the Pythago-

rean theorem in spherical geometry, for the triangle with right angle at At :

cos
�p

tDt .At ; B
x
t /
	

cos
�p

tDt .At ; C
y
t /
	
D 1p

tx2 C 1pty2 C 1
D cos

�p
tDt .C

y
t ; B

x
t /
	
:

Taking the limit, as t ! 0 gives

1 D 1 � 1;
which is correct but which is not the Euclidean Pythagorean theorem. We obtain
a more useful result by taking another limit.

We transform the spherical Pythagorean theorem into the following one:

p
t
�
1 � cos.

p
tDt .At ; B

x
t // cos.

p
tDt .At ; C

x
t //

	
D

p
t
�
1 � cos.

p
tDt .C

y
t ; B

x
t //
	
:
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Writing this equation at the first order using the expansion

1p
t

arccos

�
1p

tx2 C 1
�
D
ˇ̌̌
ˇx � 13 tx3 C 1

5
t2x5 � : : :

ˇ̌̌
ˇ

and taking the limit as t ! 0, with t > 0 (use Equation 8.5) gives

D0.A0; B
x
0 /
2 CD0.A0; C y0 /2 D D0.Bx0 ; C y0 /2;

which is the Pythagorean theorem in the geometry E0. This is indeed the familiar
Pythagorean theorem in Euclidean geometry.

It is possible to do the same calculation in the hyperbolic case (t < 0), where the
hyperbolic Pythagorean theorem is:

Proposition 6.1.

cosh
�p�tDt .At ; Bxt /	 cosh

�p�tDt .At ; C yt /	 D cosh
�p�tDt .C yt ; Bxt /	 :

7 Transition of angles and of area

Using the Pythagorean theorem in spherical and hyperbolic geometry, it is possible
to prove the other formulae in the above table, in particular the formulae

cosAt D tan
p
at

tan
p
bt

in spherical geometry and

cosAt D tanh
p
at

tanh
p
bt

in hyperbolic geometry.
At the same time, we can study convergence of angles. For this, take a triangle

ABC with right angle at C and let ˛ be the angle at A. For each t , the (lengths of
the) sides opposite to A;B;C are respectively at ; bt ; ct in the geometryEt . Take the
side lengths a and b to be constant, at D a and bt D b. For each t , we have, in the
geometry Et ,

cos˛t D tan
p
ta

tan
p
tb
:

As t ! 0, we have cos˛t ! a=b. Thus, the angle ˛t in the triangle AtBtCt
converges indeed to the Euclidean angle.

Note that this can also be used to define the notion of angle in each geometry. The
reader can check that this definition amounts to the one we gave in �5.

Finally we consider transition of area.
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There are several works dealing with non-Euclidean area. For instance, in the
paper [6], Euler obtained the following formula for the area � of a spherical triangle
of side lengths a; b; c:

cos
1

2
� D 1C cos aC cos b C cos c

4 cos 1
2
a cos 1

2
b cos 1

2
c
: (8.7)

This formula should be compared to the Heron formula in Euclidean geometry that
gives the area � of a triangle in terms of its side length. In the geometry Et (t > 0),
Euler’s formula becomes

cos
1

2
� D 1C cos

p
taC cos

p
tb C cos

p
tc

4 cos
p
t
2
a cos

p
t
2
b cos

p
t
2
c

:

Setting s D pt to simplify notation, we write this formula as

cos
1

2
� D 1C cos saC cos sb C cos sc

4 cos s
2
a cos s

2
b cos s

2
c

: (8.8)

We would like to see that Euler’s formula (8.8) transits and leads to the area formula
in Euclidean geometry for t D 0. It suffices to deal with right triangles, and we
therefore assume that the angle at c is right. We use the Pythagorean theorem

cos
p
tc D cos

p
ta cos

p
tb:

We take the Taylor expansion in t in Formula (8.8).
Using the formula for the cosine of the double and taking the square, we obtain

the formula�
cos

1

2
�

�2
D .1C cos saC cos sb C cos sa � cos sb/2

2.1C cos sa/.1C cos sb/.1C cos sa � cos sb/
:

The degree-8 Taylor expansion of 1 � .cos 1
2
�/2 is

1

16
a2b2s4 C

�
1

96
a2b4 C 1

96
a4b2

�
s6 CO.s8/:

The first term in this expansion is 1
16
a2b2s4, that is, 1

16
a2b2t2, which is the square of

the expression 1
4
abt . Recall now that for the transition of the distance function (�5),

we had to normalize the length function in Et , dividing it by
p
t . It is natural then,

for the transition of the area function, to divide it by t . Thus, the result that we obtain
is 1
2
ab, which is indeed the area of a Euclidean triangle with base a and altitude b.
Finally, we note that there has been a recent activity on transition of geometries

in dimension 3, namely, on moving continuously between the eight Thurston geome-
tries, and also on varying continuously between Riemannian and Lorentzian geome-
tries on orbifolds. We mention the works of Porti [17], [19], Porti and Weiss [18],
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Cooper, Hodgson and Kerckhoff [3], Kerckhoff and Storm [11] and Dancieger [4].
The ideas and the methods are different from those of the present paper.5

As a conclusion, we propose the following problem.

Problem 7.1. Extend this theory of transition of geometries to a parameter space
which, instead of being the interval Œ�1; 1�, is a neighborhood of the origin in the
complex plane C.

This is in accordance with a well-established tradition to trying to extend to the
complex world. We recall in this respect the following words of Painlevé [16] “Entre
deux vérités du domaine réel, le chemin le plus facile et le plus court passe bien sou-
vent par le domaine complexe.” (Between two truths of the real domain, the easiest
and shortest path quite often passes through the complex domain.)6 We also recall
Riemann’s words, from his Inaugural dissertation [20], concerning the introduction
of complex numbers: “If one applies these laws of dependence in an extended con-
text, by giving the related variables complex values, there emerges a regulatrity and
harmony which would otherwise have remained concealed.”
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1 Cross Ratio

We consider the projective geometry of a Riemannian manifold .M; g/ as the geom-
etry of the space of lines/unparametrized geodesics of the manifold. For each n � 2,
the Euclidean space Rn, the sphere Sn and the hyperbolic space Hn provide a col-
lection of Riemannian manifolds of constant sectional curvatures 0; 1 and �1 that are
distinct from each other in the Riemannian sense, but one can consider the projective
geometry on each of these spaces and ask whether these spaces are distinct in this
setting. The most important qualitative feature of projective geometry is the notion
of cross ratio, and in this geometry the Riemannian distance and angle invariance un-
der isometric transformations of the underlying Riemannian manifold are replaced by
a weaker invariance of the cross ratio under projective transformations. The goal of
this chapter is to highlight the relations among the projective geometries of these three
space forms through the projective models of these spaces in the Minkowski space
R
n;1, by using a cross ratio notion which is proper to each of the three geometries.

Felix Klein was the first to give a formula for distances in hyperbolic metric.
This formula uses the disc Euclidean model, which Beltrami had already presented
as a model for hyperbolic geometry, noticing that the Euclidean lines in this model
satisfy all the axioms of hyperbolic geometry. Klein’s formula (see [2]) uses the
cross-ratio, which is a fundamental object in projective geometry. This study is also
in the spirit of Klein’s Erlangen program, in which Klein proposed to study Euclidean,
hyperbolic and spherical geometry in the unifying setting of projective geometry.

We start by recalling some classical facts.
Consider a geodesic line in Euclidean space and let A1; A2; A3; A4 be four or-

dered pairwise distinct points on that line. Their cross ratio ŒA1; A2; A3; A4� is de-
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fined by the formula:

ŒA1; A2; A3; A4�e WD A2A4

A3A4
� A3A1
A2A1

where for 1 � i; j � 4, AiAj denotes the Euclidean distance.
Now consider four ordered distinct lines l1; l2; l3; l4 in the Euclidean plane R2

that are concurrent at a point A and let l be a line that intersects these four lines at
points A1; A2; A3; A4 respectively. Then the cross ratio ŒA1; A2; A3; A4� does not
depend on the choice of the line l . This property expresses the fact that the cross ratio
is a projectivity invariant.

As a matter of fact, Menelaus of Alexandria (2nd century A.D.) knew the above
property not only for the Euclidean plane, but also on the sphere, where the lines are
the spherical geodesics, that is, the great circles of the sphere, and he used it in his
work; see [7].

Once there is a parallel between the Euclidean geometry and the spherical geom-
etry, it is natural to expect a corresponding statement for hyperbolic geometry. We
now define the cross ratio for the non-Euclidean geometries.

Definition 1.1 (Non-Euclidean cross ratio). Consider a geodesic line in the hyper-
bolic n-space or on the n-sphere respectively and let A1; A2; A3; A4 be four ordered
pairwise distinct points on that line. We define the cross ratio ŒA1; A2; A3; A4�, in the
hyperbolic case, by:

ŒA1; A2; A3; A4�h WD sinhA2A4
sinhA3A4

� sinhA3A1
sinhA2A1

;

and in the spherical case, by:

ŒA1; A2; A3; A4�s WD sinA2A4
sinA3A4

� sinA3A1
sinA2A1

;

where AiAj stands for the distance between the pair of points Ai and Aj . (For this,
we shall assume that in the case of the sphere the four points lie in a hemisphere;
instead, we could work in the elliptic space, that is, the quotient of the sphere by its
canonical involution.)

We denote by U n the open upper hemisphere of Sn equipped with the induced
metric and we let X and X 0 belong to the set fRn;Hn; U ng. We shall say that a map
X ! X 0 is a perspectivity, or a perspective-preserving transformation if it preserves
lines and if it preserves the cross ratio of quadruples of points on lines. (We note that
these terms are classical in the Euclidean setting, see e.g. Hadamard [4] or Busemann
[3]. In the Euclidean world, such maps arise indeed in perspective drawing.) In what
follows, using well-known projective models in R

nC1 of the hyperbolic space H
n

and of the sphere Sn, we define natural homeomorphisms between Rn, Hn and the
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open upper hemisphere of Sn which are perspective-preserving transformations. The
proofs are elementary and are based on first principles of geometry.

The existence and the invariance properties of this cross ratio is used to develop an
analogue of the classical Funk and Hilbert geometries on convex subsets of hyperbolic
space and on the sphere, see [6].

2 Projective Geometry

The word “projective” is often used as a property of the incidence of lines (or of
geodesics) in the underlying space. On the other hand, the n-dimensional sphere and
the n-dimensional hyperbolic space are realized projectively in n C 1-dimensional
Euclidean space as sets of unit length vectors. Namely the sphere Sn is the set of unit
vectors in RnC1 with respect to the Euclidean norm

x21 C � � � C x2n C x2nC1 D 1
and the hyperbolic space H

n is one of the two components the set of “vectors of
imaginary norm i” with xnC1 > 0 in RnC1 with respect to the Minkowski norm

x21 C � � � C x2n � x2nC1 D �1:
One reason for which these models of the two constant curvature spaces are called
projective is that the geodesics in the curved spaces are realized as the intersection
of the unit spheres with the two-dimensional subspaces of RnC1 through the origin
of this space. We also note that each two-dimensional linear subspace intersects the
hyperplane fxnC1 D 1g in a Euclidean geodesic. Conversely, each two-dimensional
linear subspace of RnC1 represents a geodesic in each of the three geometries, con-
sequently establishing the correspondence between the three incidence geometries.

We prove the following two theorems:

Theorem 2.1 (Spherical Case). Let Ps be the projection map from the origin of RnC1
sending the open upper hemisphere U n of Sn onto the affine hyperplane
fxnC1 D 1g 	 R

nC1. Then the projection map Ps is a perspectivity. In particu-
lar it preserves the values of cross ratio; namely for a set of four ordered pairwise
distinct points A1; A2; A3; A4 aligned on a great circle in the upper hemisphere, we
have

ŒPs.A1/; P2.A2/; Ps.A3/; Ps.A4/�e D ŒA1; A2; A3; A4�s:
Proof. Let u; v be the two points on the hyperplane fxnC1 D 1g, let P�1

s .u/ DW
Œu�; P�1

s .v/ DW Œv� be the points in U , and let d.Œu�; Œv�/ be the spherical distance be-
tween them. Finally let kxk be the Euclidean norm of the vector x 2 R

nC1. Assume
that u, v and the origin .0; : : : ; 0; 1/ of the hyperplane fxnC1 D 1g are collinear.

We claim that

sin d.Œu�; Œv�/ D ku � vkkukkvk :
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This follows from the following trigonometric relations:

sin d.Œu�; Œv�/ D sin
h

cos�1
� u

kuk �
v

kvk
	i

D
r
1� cos2

h
cos�1

� u

kuk �
v

kvk
	i

D
s
1 � . ukuk �

v

kvk
	2 D 1

kukkvk
p
kuk2kvk2 � .u � v/2

D 1

kukkvk � .the area of parallelogram spanned by u and v/

D ku � vkkukkvk :

(The last equality holds since the line through the origin of RnC1 and the origin of
the plane fxnC1 D 1g is perpendicular to the line through u and v.)

Now consider a set of four ordered pairwise distinct pointsA1; A2; A3; A4 aligned
on a great circle in the upper hemisphere, whose images Ps.A1/, Ps.A2/, Ps.A3/,
Ps.A4/ by Ps are aligned on a line `0 through the origin .0; : : : ; 0; 1/ of the hyper-
plane fxnC1 D 1g. Their spherical cross ratio

ŒA1; A2; A3; A4�s

is equal to the Euclidean cross ratio of their images,

ŒPs.A1/; Ps.A2/; Ps.A3/; Ps.A4/�e

since we have:

sin d.ŒA2�; ŒA4�/

sin d.ŒA3�; ŒA4�/
� sin d.ŒA3�; ŒA1�/

sin d.ŒA2�; ŒA1�/
D
kA2 �A4k
kA2kkA4k
kA3 �A4k
kA3kkA4k

�
kA3 � A1k
kA3kkA1k
kA2 � A1k
kA2kkA1k

D kA2 �A4kkA3 �A4k �
kA3 �A1k
kA2 �A1k :

For the general case, suppose that the line `0, on which the set of four points
Ps.A1/; Ps.A2/; Ps.A3/; Ps.A4/ are aligned, does not go through the origin of
.0; : : : ; 0; 1/ of the hyperplane fxnC1 D 1g. Now consider a line ` through the origin,
which is … \ fxnC1 D 1g for some two-dimensional subspace … 	 R

nC1. There
is some two-dimensional subspace …0 	 RnC1 such that `0 D …0 \ fxnC1 D 1g.
As the group SO.nC 1/ acts transitively on the space of lines in fxnC1 D 1g, there
exists an element L 2 SO.nC 1/ satisfying L.…0/ D …, which induces a projective
transformation QL of fxnC1 D 1g sending `0 to `, in particular preserving the value of
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the cross ratio

ŒPs.A2/; Ps.A3/; Ps.A4/; Ps.A1/�e

D ŒL ı Ps.A2/; L ı Ps.A3/; L ı Ps.A4/; L ı Ps.A1/�e:
On the other hand, the elements of SO.n C 1/ are isometries on the unit sphere in
R
nC1. Hence the spherical cross ratio is preserved by the action of L;

ŒL.A1/; L.A2/; L.A3/; L.A4/�s D ŒA1; A2; A3; A4�s:
Note that for a point x 2 U 2 R

nC1, the transformations L and Ps commute in the
following sense:

Ps ı L.x/ D QL ı Ps.x/:
Hence we have QL ı Ps.Ai / D Ps ı L.Ai / for i D 1; 2; 3; 4. As the four points fPs ı
L.Ai/g are on the line ` going through the origin, from the special case considered at
the beginning of the proof, we have

ŒPsıL.A1/; PsıL.A2/; PsıL.A3/; PsıL.A4/�e D ŒL.A1/; L.A2/; L.A3/; L.A4/�s:
Putting the equalities together, we conclude the equality

ŒPs.A1/; Ps.A2/; Ps.A3/; Ps.A4/�e D ŒA1; A2; A3; A4�s: �

Theorem 2.2 (Hyperbolic Case). Let Ph be the projection map of the upper sheet
of the hyperboloid H

n 	 R
nC1 from the origin of RnC1 onto the unit disc of the

hyperplane fxnC1 D 1g 	 R
nC1. Then the projection map Ph is a perspectivity.

In particular it preserves the values of cross ratio; namely for a set of four ordered
pairwise distinct points A1; A2; A3; A4 aligned on a geodesic in the upper sheet of
the hyperbolid, we have

ŒPh.A1/; Ph.A2/; Ph.A3/; Ph.A4/�e D ŒA1; A2; A3; A4�h:
Proof. We follow the reasoning we did in the spherical case, replacing the sphere
of unit radius in R

nC1 by the upper sheet of “the sphere of radius i”, namely the
hyperboloid in R

n;1. Let u; v be the two points on the hyperplane fxnC1 D 1g and
P�1
h
.u/ DW Œu�; P�1

h
.v/ DW Œv� be the points in the hyperboloid, that is, the time-like

vectors of unit (Minkowski) norm. We first consider a special case where u, v and
the origin .0; : : : ; 0; 1/ of the hyperplane fxnC1 D 1g are collinear.

Denote by d.Œu�; Œv�/ the hyperbolic distance between the points and kxk be the
Minkowski norm of the vector x 2 R

n;1. We will show that

sinhd.Œu�; Œv�/ D �ku � vkkukkvk :

Note that the number on the right hand side is positive, for kuk; kvk are positive
imaginary numbers, and u� v is a purely space-like vector, on which the Minkowski
norm of Rn;1 and the Euclidean norm of Rn coincide.
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We now use the hyperbolic trigonometry relations:

sinhd.Œu�; Œv�/ D sinh
h

cosh�1 � u

kuk �
v

kvk
	i

D
r

cosh2
h

cosh�1 � u

kuk �
v

kvk
	i
� 1

D
s� u

kuk �
v

kvk
	2 � 1 D

p�1
kukkvk

p
kuk2kvk2 � .u � v/2

D
p�1
kukkvk

p�1 � .the area of parallelogram spanned by u and v/

D �ku � vkkukkvk :

The formulap
kuk2kvk2 � .u � v/2 D p�1 � .the area of parallelogram spanned by u and v/

is in Thurston’s notes (Section 2.6 [8]).
Now the proof of the theorem, in the case where the four points A1; A2; A3; A4

on the hyperboloid are such that their images Ph.A1/; Ph.A2/; Ph.A3/; Ph.A4/ by
Ph are on a line `0 through the origin .0; : : : ; 0; 1/ of the hyperplane fxnC1 D 1g
follows by the same argument as in the spherical case, namely, the hyperbolic cross
ratio ŒA1; A2; A3; A4�h is equal to the Euclidean cross ratio ŒP.A1/; P.A2/; P.A3/;
P.A4/�e .

Now we consider the general case, namely the line `0, on which the set of four
points Ph.A1/; Ph.A2/; Ph.A3/; Ph.A4/ are aligned, does not go through the origin
.0; : : : ; 0; 1/ of the hyperplane fxnC1 D 1g. Consider a line ` through the origin of
this plane. It can be written as … \ fxnC1 D 1g for some two-dimensional subspace
… 	 R

nC1. There is also some two-dimensional subspace …0 	 R
nC1 such that

`0 D …0 \ fxnC1 D 1g. Since the group SO.n; 1/ acts transitively on the space of
lines intersecting the unit ball fPn

iD1 x2i < 1g in fxnC1 D 1g, there exists an element
L 2 SO.n; 1/ satisfying L.…0/ D …, which induces a projective transformation QL
of fxnC1 D 1g sending `0 to `, in particular preserving the cross ratios:

ŒPh.A1/; Ph.A2/; Ph.A3/; Ph.A4/�e

D Œ QL ı Ph.A1/; QL ı Ph.A2/; QL ı Ph.A3/; QL ı Ph.A4/�e:
On the other hand, the elements of SO.n; 1/ are isometries on the hyperboloid H

n.
Hence the hyperbolic cross ratio is preserved by the action of L;

ŒL.A1/; L.A2/; L.A3/; L.A4/�h D ŒA1; A2; A3; A4�h:
The transformations L and Ph commute in the sense that for any point x 2 Hn 	
R
nC1

Ph ı L.x/ D QL ı Ph.x/:
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Hence we have QL ı Ph.Ai/ D Ph ı L.Ai / for i D 1; 2; 3; 4. From the special case
considered at the beginning of the proof, we have

ŒPhıL.A1/; PhıL.A2/; PhıL.A3/; PhıL.A4/�e D ŒL.A1/; L.A2/; L.A3/; L.A4/�h
Putting these equalities together, we conclude the equality

ŒPh.A1/; Ph.A2/; Ph.A3/; Ph.A4/�e D ŒA1; A2; A3; A4�s �

Corollary 2.3. The spherical and hyperbolic cross ratios are projectivity invariants.

This follows from the fact that the projection map Ps and Ph are both perspective-
preserving transformations. The classical proofs of this result in the cases of Eu-
clidean and spherical geometry relies on the fact that the cross ratio is completely
determined by the angles among the lines/geodesic li ’s at the vertex A. This proof
can easily be done using the Sine Rule, see [7] for the case of spherical geometry. For
this and for other non-Euclidean trigonometric formulae in hyperbolic trigonometry
we refer the reader to [1] where the proofs are given in a model-free setting. In such
a setting the proofs in the hyperbolic and the spherical cases can be adapted from
each other with very little changes.

3 Generalized Beltrami–Klein models of Hn

Given a bounded open convex set 
 in a Euclidean space, D. Hilbert in ([5] 1895)
proposed a natural metric H.x; y/, now called the Hilbert metric, defined for x 6D
y in 
 as the logarithm of the cross ratio of the quadruple .x; y; b.x; y/; b.y; x//,
where b.x; y/ is the point where the ray R.x; y/ from x through y hits the boundary
@
 of 
. This defines a metric on 
, which is Finslerian and projective. We refer
to the article [6] for a parallel treatment of the subject in hyperbolic and in spherical
geometry.

A special case of the Hilbert metric gives the Beltrami–Klein model of hyper-
bolic space, where the underlying convex set 
 is the unit ball in R

n. In fact, this
special case was Hilbert’s primary motivation to define the so-called Hilbert metric
on an arbitrary bounded open convex set 
 in a Euclidean space. Actually, for the
Beltrami–Klein model, the size of the ball is irrelevant, as the Hilbert metric is in-
variant under homothety of the underlying Euclidean space, so that for each Hilbert
metric H�.x; y/ defined on the ball B�.0/ of radius � > 0 centered at the origin,
.B�;H�/ is isometric to the hyperbolic space H

n.
Immediate corollaries of Theorems 2.1 and 2.2 are that there are new models of

the hyperbolic space, which we call generalized Beltrami–Klein models. To describe
them, we first set some notation: let Bh� and Bs� be the geodesic balls of Hn and Sn

respectively, both centered at a fixed reference point which is identified with the point
.0; � � � ; 0; 1/ of RnC1 via the projective models. Then we define the spherical Hilbert
metric as follows:
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Definition 3.1. For a pair of points x and y in Bs� with 0 < � � �=2, the Hilbert
distance from x to y is defined by

H s
� .x; y/ D

8<
:log

sin d.x; b.x; y//

sin d.y; b.x; y//
� sin d.y; b.y; x//

sin d.x; b.y; x//
if x 6D y,

0 otherwise

where b.x; y/ is the point where the geodesic ray R.x; y/ from x through y hits the
boundary @Bs� of Bs� .

We also define hyperbolic Hilbert metric:

Definition 3.2. For a pair of points x and y in Bh� with � > 0, the Hilbert distance
from x to y is defined by

Hh
� .x; y/ D

8<
:log

sinhd.x; b.x; y//

sinhd.y; b.x; y//
� sinhd.y; b.y; x//

sinhd.x; b.y; x//
if x 6D y,

0 otherwise

where b.x; y/ is the point where the geodesic ray R.x; y/ from x through y hits the
boundary @Bh� of Bh� .

Through the projective maps Ps and Ph, each geodesic ball in the curved spaces
corresponds to a Euclidean ball. From Theorems 2.1 and 2.2, the Hilbert distance,
which is the logarithm of the spherical/hyperbolic cross ratio of the quadruple
.x; y; b.x; y/; b.y; x// defined on the geodesic ball, is preserved by projective maps;
that is, Ph and Ps are isometries of the Hilbert metrics. Hence it follows that in the
spherical case, we have the following:

Corollary 3.3. The geodesic ball Bs� in the unit sphere Sn with 0 < � < �=2 with
its spherical Hilbert metric H s

� is isometric to the hyperbolic space Hn.

And in the hyperbolic case, we have:

Corollary 3.4. The geodesic ball Bh� in the hyperbolic space Hn with its hyperbolic

Hilbert metric Hh
� is isometric to the hyperbolic space Hn.

We can consider the spaces .Bs�;H
s
� / and .Bh� ;H

h
� / as generalized Beltrami–

Klein models of the hyperbolic space.
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1 Introduction

The field of discrete differential geometry is presently emerging on the border be-
tween differential and discrete geometry. Whereas classical differential geometry
investigates smooth geometric shapes, discrete differential geometry studies geomet-
ric shapes with a finite number of elements and aims to develop discrete equivalents
of the geometric notions and methods of classical differential geometry. The latter
appears then as a limit of refinements of the discretization.

One may suggest many different reasonable discretizations with the same smooth
limit. Which one is the best? From our point of view, the best discretization is the one
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which preserves the fundamental properties of the smooth theory. Such a discretiza-
tion often clarifies the structures of the smooth theory and it possesses important con-
nections with other fields of mathematics (projective geometry, integrable systems,
algebraic geometry, complex analysis, etc.).

In particular, in this chapter, we will be mainly interested in relations with inte-
grable systems. It is well known that differential equations describing interesting spe-
cial classes of surfaces and parametrizations are integrable, and, conversely, many in-
teresting integrable systems admit a differential-geometric interpretation. The area of
integrable differential geometry was founded in the fundamental treatises by Bianchi
[4], Darboux [14, 15], and Eisenhart [20]. A progress in understanding the unifying
fundamental structure that the classical differential geometers were looking for, and
simultaneously in understanding of the very nature of integrability, came from the
efforts to discretize these theories. It turns out that many sophisticated properties of
differential-geometric objects find their simple explanation within discrete differen-
tial geometry. The early period of this development is documented in the work of
Sauer [23, 24]. The modern period began with the work by Bobenko and Pinkall
[8, 9] and by Doliwa and Santini [18, 13]. An extensive exposition is given in the
textbook by Bobenko and Suris [12], on which this chapter is mainly based. We re-
fer the reader to this book for all the proofs omitted here, as well as for the detailed
bibliographical remarks.

Discrete differential geometry related to integrable systems deals with multidi-
mensional discrete nets, i.e., maps from the regular cubic lattice Z

m into R
N spec-

ified by certain geometric properties. We will be most interested in this chapter in
the case N D 3. In this setting discrete surfaces appear as two-dimensional layers
of multidimensional discrete nets, and their transformations correspond to shifts in
the transversal lattice directions. A characteristic feature of the theory is that all lat-
tice directions are on equal footing with respect to the defining geometric properties.
Discrete surfaces and their transformations become indistinguishable. We associate
such a situation with the multidimensional consistency, and this is one of our funda-
mental discretization principles. The multidimensional consistency, and therefore the
existence and construction of multidimensional nets, relies just on certain incidence
theorems of elementary geometry.

Conceptually, one can think of passing to a continuum limit by refining the mesh
size in some of the lattice directions. In these directions, the net converges to smooth
surfaces whereas those directions that remain discrete correspond to transformations
of the surfaces (see Figure 10.1). The smooth theory comes as a corollary of a more
fundamental discrete master theory. The true roots of classical surface theory are
found, quite unexpectedly, in various incidence theorems of elementary geometry.
This phenomenon, which has been shown for many classes of surfaces and coordinate
systems [10, 12], is currently getting accepted as one of the fundamental features of
classical integrable differential geometry.

Note that finding simple discrete explanations for complicated differential ge-
ometric theories is not the only outcome of this development. Having identified
the roots of integrable differential geometry in the multidimensional consistency of
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Figure 10.1. From the discrete master theory to the classical theory: surfaces and their transforma-
tions appear by refining two of three net directions.

discrete nets, we are led to a new (geometric) understanding of integrability itself
[11, 2, 12].

The simplest and at the same time the basic example of consistent multidimen-
sional nets are multidimensional Q-nets [18], or discrete conjugate nets [23, 24],
which are characterized by planarity of all quadrilaterals. The planarity property
is preserved by projective transformations and thus Q-nets are subject of projective
geometry (like conjugate nets, which are smooth counterparts of Q-nets).

Here we come to the next basic discretization principle. According to Klein’s Er-
langen program, geometries are classified by their transformation groups. Classical
examples are projective, affine, Euclidean, spherical, hyperbolic geometries, and the
sphere geometries of Lie, Möebius, and Laguerre. We postulate that the transfor-
mation group as the most fundamental feature should be preserved by discretization.
This can be seen as a sort of discrete Erlangen program.

Thus we come to the following fundamental Discretization Principles:

1. Transformation group principle: smooth geometric objects and their discretiza-
tions belong to the same geometry, i.e. they are invariant with respect to the
same transformation group.

2. Multidimensional consistency principle: discretizations of surfaces, coordinate
systems, and other smooth parametrized objects can be extended to multidi-
mensional consistent nets.

Let us explain why such different imperatives as the transformation group princi-
ple and the consistency principle can be simultaneously imposed for the discretiza-
tion of classical geometries. The transformation groups of various geometries are
subgroups of the projective transformation group. Classically, such a subgroup is de-
scribed as consisting of projective transformations which preserve some distinguished
quadric called the absolute, see [1] in this volume. A remarkable result by Doliwa
[16] is that multidimensional Q-nets can be restricted to an arbitrary quadric. This is
the reason why the discretization principles work for the classical geometries.
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2 Multidimensional consistency as
a discretization principle

2.1 Q-nets We use the following standard notation: for a function f on Z
m we

write
�if .u/ D f .uC ei /;

where ei is the unit vector of the i -th coordinate direction, 1 � i � m. We also use
the shortcut notation fi for �if , fij for �i�jf , etc.

The most general known discrete 3D systems possessing the property of 4D con-
sistency are nets consisting of planar quadrilaterals, or Q-nets. Two-dimensional Q-
nets were introduced by Sauer [23, 24], and the multi-dimensional generalization has
been given by Doliwa and Santini [18]. Our presentation in this section follows the
latter. The fundamental importance of multi-dimensional consistency of discrete sys-
tems as their integrability has been put forward in [11, 2, 12].

Definition 2.1. (Q-net) A map f W Zm ! RPN is called an m-dimensional Q-net
(quadrilateral net, or discrete conjugate net) in RP

N .N � 3/, if all its elementary
quadrilaterals .f; fi ; fij ; fj / (at any u 2 Z

m and for all pairs 1 � i ¤ j � m) are
planar.

Given three points f , f1, f2 in RP
N , one can take any point of the plane through

these three points as the fourth vertex f12 of an elementary quadrilateral
.f; f1; f12; f2/ of a Q-net. Correspondingly, given any two discrete curves f W
Z � f0g ! RPN and f W f0g � Z ! RPN with a common point f .0; 0/, one
can construct infinitely many Q-surfaces f W Z2 ! RP

N with these curves as coor-
dinate ones: the construction goes inductively: at each step one has the freedom of
choosing a point in a plane (two real parameters).

On the other hand, constructing elementary hexahedra of Q-nets corresponding
to elementary 3D cubes of the lattice Z

m admits a well-posed initial value problem
with a unique solution; therefore one says that Q-nets are described by a discrete 3D
system:

Theorem 2.2. (Elementary hexahedron of a Q-net) Given seven points f , fi
and fij .1 � i < j � 3/ in RP

N , such that each of the three quadrilaterals
.f; fi ; fij ; fj / is planar (i.e., fij lies in the plane …ij through f , fi , fj ), define
three planes �k…ij as those passing through the point triples fk , fik , fjk , respec-
tively. Then these three planes intersect generically at one point:

f123 D �1…23 \ �2…13 \ �3…12 :

The elementary construction step from Theorem 2.2 is symbolically represented
in Figure 10.2, which is the picture we have in mind when thinking about discrete
three-dimensional systems with dependent variables (fields) attached to the vertices
of a regular cubic lattice.
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f

f3

f12

f1

f13

f2

f23 f123

Figure 10.2. A 3D system on an elementary cube: the field at the white vertex is determined by the
seven fields at the black vertices (initial data)

As follows from Theorem 2.2, a three-dimensional Q-net f W Z3 ! RPN is
completely determined by its three coordinate surfaces

f W Z2 � f0g ! RP
N ; f W Z � f0g � Z! RP

N ; f W f0g � Z
2 ! RP

N :

Turning to an elementary cube of dimensionm � 4, we see that one can prescribe
all points f , fi and fij for all 1 � i < j � m. Indeed, these data are clearly
independent, and one can construct all other vertices of an elementary cube starting
from these data, provided one does not encounter contradictions. To see a possible
source of contradiction, consider in detail first the case m D 4. From f , fi and fij
.1 � i < j � 4/, one determines all fijk uniquely. After that, one has, in principle,
four different ways to determine f1234, from four 3D cubic faces adjacent to this
point; see Figure 10.3. Absence of contradictions means that these four values for
f1234 automatically coincide. We call this property the 4D consistency.

Definition 2.3. (4D consistency) A 3D system is called 4D consistent, if it can be im-
posed on all three-dimensional faces of an elementary cube of Z4 (see Figure 10.3).

Remarkably, the construction of Q-nets based on the planarity of all elementary
quadrilaterals enjoys this property.

Theorem 2.4. (Q-nets are 4D consistent) The 3D system governing Q-nets is 4D-
consistent.

The m-dimensional consistency of a 3D system for m > 4 is defined analogously
to the m D 4 case. Remarkably and quite generally, the 4-dimensional consistency
already implies m-dimensional consistency for all m > 4.

Theorem 2.5. (4D consistency yields consistency in all higher dimensions) Any
4D consistent discrete 3D system is also m-dimensionally consistent for any m > 4.



252 Yuri B. Suris

�

f f1

f2
f3

f12

f13

f23 f123

f4 f14

f24

f34

f124

f134

f234 f1234

Figure 10.3. 4D consistency of 3D systems: the fields at the black vertices (initial data) determine,
in virtue of the 3D system, the fields fijk at the white vertices. Then the 3D system gives four
a priori different values for f1234. The system is 4D consistent, if these four values coincide for
any initial data

Theorems 2.4, 2.5 yield that Q-nets are m-dimensionally consistent for any m �
4. This fact, in turn, yields the existence of transformations of Q-nets with remarkable
permutability properties. Referring for the details to [19, 12], we mention here only
the definition.

Definition 2.6. (F-transformation of Q-nets) Two m-dimensional Q-nets f; f C W
Z
m ! RP

N are called F-transforms (fundamental transforms) of one another, if all
quadrilaterals .f; fi ; f

C
i ; f

C/ (at any u 2 Z
m and for all 1 � i � m) are planar, i.e.,

if the net F W Zm�f0; 1g ! RP
N defined by F.u; 0/ D f .u/ and F.u; 1/ D f C.u/

is a two-layer .mC 1/-dimensional Q-net.

It follows from Theorem 2.2 that, given a Q-net f , its F-transform f C is uniquely
defined as soon as its points along the coordinate axes are suitably prescribed.

2.2 Discrete line congruence Another important geometrical objects described
by a discrete 3D system which is 4D consistent, are discrete line congruences. Their
theory has been developed by Doliwa, Santini and Mañas [19].

Let LN be the space of lines in RPN ; it can be identified with the Grassmannian
Gr.N C 1; 2/ of two-dimensional vector subspaces of RNC1.

Definition 2.7. (Discrete line congruence) A map ` W Zm ! LN is called an m-
dimensional discrete line congruence in RP

N , .N � 3/, if any two neighboring lines
`, `i (at any u 2 Zm and for any 1 � i � m) intersect (are co-planar).
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For instance, lines ` D .ff C/ connecting corresponding points of two Q-nets
f; f C W Zm ! RP

N in the relation of F-transformation clearly build a discrete line
congruence.

A discrete line congruence is called generic, if for any u 2 Zm and for any 1 �
i ¤ j ¤ k ¤ i � m, the four lines `, `i , `j and `k span a four-dimensional
space (i.e., a space of a maximal possible dimension). This yields, in particular, that
for any u 2 Z

m and for any 1 � i ¤ j � m, the three lines `, `i and `j span
a three-dimensional space.

The construction of line congruences is similar to that of Q-nets. Given three lines
`, `1, `2 of a congruence, one has a two-parameter family of lines admissible as the
fourth one `12: connect by a line any point of `1 with any point of `2. Thus, given
any two sequences of lines ` W Z�f0g ! LN and ` W f0g�Z! LN with a common
line `.0; 0/ such that any two neighboring lines are co-planar, one can extend them
to a two-dimensional line congruence f W Z2 ! LN in an infinite number of ways:
at each step of the inductive procedure, one has a freedom of choosing a line from
a two-parameter family.

Non-degenerate line congruences are described by a discrete 3D system, which is,
moreover, multidimensionally consistent:

Theorem 2.8. (Elementary hexahedron of a discrete line congruence) Given seven
lines `, `i and `ij .1 � i < j � 3/ in RP

N such that ` intersects each of `i , the
space V123 spanned by `, `1, `2, `3 has dimension four, and each `i intersects both
`ij and `ik, there is generically a unique line `123 that intersects all three `ij .

Theorem 2.9. (Discrete line congruences are 4D consistent) The 3D system gov-
erning discrete line congruences is 4D-consistent.

Like in the case of Q-nets, this theorem yields the existence of transformations of
discrete line congruences with remarkable permutability properties.

Definition 2.10. (F-transformation of line congruences) Two m-dimensional line
congruences `; `C W Zm ! LN are called F-transforms of one another if the corre-
sponding lines ` and `C intersect (at any u 2 Zm), i.e., if the map L W Zm � f0; 1g !
LN defined by L.u; 0/ D `.u/ and L.u; 1/ D `C.u/ is a two-layer .m C 1/-
dimensional line congruence.

It follows from Theorem 2.8 that given a line congruence `, its F-transform `C is
uniquely defined as soon as its lines along the coordinate axes are suitably prescribed.

According to Definition 2.7, any two neighboring lines ` D `.u/ and `i D `.uC
ei / of a line congruence intersect at exactly one point f D ` \ `i 2 RP

N which
is thus combinatorially associated with the edge .u; uC ei / of the lattice Zm: f D
f .u; uC ei/. It is, however, sometimes more convenient to use the notation f .u; uC
ei / D f .i/.u/ for this point, thus associating it to the vertex u of the lattice (and, of
course, to the coordinate direction i ). See Figure 10.4.
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f .i/

f .j /
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.j /
i

`

`i

`j

`ij

Figure 10.4. Four lines of a discrete line congruence

Definition 2.11. (Focal net) For a discrete line congruence ` W Zm ! LN , the map
f .i/ W Zm ! RPN defined by f .i/.u/ D `.u/ \ `.uC ei / is called its i -th focal net
(see Figure 10.5).

Theorem 2.12. For a non-degenerate discrete line congruence ` W Zm ! LN , all its
focal nets f .k/ W Zm ! RPN , 1 � k � m, are Q-nets.

Corollary 2.13. (Focal net of F-transformation of a line congruence) Given two
generic line congruences `; `C W Zm ! LN in the relation of F-transformation, the
intersection points f D ` \ `C form a Q-net f W Zm ! RP

N .

2.3 Q-nets in quadrics We consider an important admissible reduction of Q-
nets: they can be restricted to an arbitrary quadric in RP

N . In the smooth differential
geometry, i.e., for conjugate nets, this is due to Darboux [14]. In the discrete differ-
ential geometry this result has been found by Doliwa [16].

A deep reason for this result is the following fundamental fact well known in
classical projective geometry (see, e.g., [6]):

Theorem 2.14. (Associated point) Given eight distinct points which are the inter-
section set of three quadrics in RP

3, all quadrics through any seven of these points
must pass through the eighth point. Such sets of points are called associated.

Theorem 2.15. (Elementary hexahedron of a Q-net in a quadric) If seven points
f , fi , and fij (1 � i < j � 3) of an elementary hexahedron of a Q-net f W Zm !
RP

N belong to a quadric Q 	 RP
N , then so does the eighth point f123.

As a global corollary of this local statement, we immediately obtain the following:

Theorem 2.16. (Reduction of Q-nets to a quadric) If the coordinate surfaces of
a Q-net f W Zm ! RP

N belong to a quadric Q, then so does the entire f .
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Figure 10.5. Elementary .ij / quadrilateral of the k-th focal net is planar

Another version of Theorem 2.15 can be formulated as follows. It is based on an
obvious fact that for a nonisotropic line ` with a nonempty intersection with Q, this
intersection consists generically of two points (because it is governed by a quadratic
equation).

Theorem 2.17. (Elementary Ribaucour transformation in a quadric) Let
.f; f1; f12; f2/ be a planar quadrilateral in a quadric Q. Let `; `1; `2; `12 be non-
isotropic lines in RP

N containing the corresponding points f; f1; f2; f12 and such
that every two neighboring lines intersect. Denote the second intersection points
of the lines with Q by f C, f C

1 , f C
12 , f C

2 , respectively. Then the quadrilateral
.f C; f C

1 ; f
C
12 ; f

C
2 / is also planar.

Again, a global version of this local statement is immediate:

Theorem 2.18. (Ribaucour transformation of a Q-net in a quadric) Consider
a quadric Q 	 RP

N and a Q-net f W Zm ! Q. Let a discrete congruence of
nonisotropic lines ` W Zm ! LN be given such that f .u/ 2 `.u/ for all u 2 Z

m.
Denote by f C.u/ the second intersection point of `.u/ with Q, so that `.u/ \Q D
ff .u/; f C.u/g. Then f C W Zm ! Q is also a Q-net, called a Ribaucour transfor-
mation of f .

Similarly, the 3D system describing line congruences admits a reduction to an ar-
bitrary quadric. Suppose that the quadratic form in the space RNC1 of homogeneous
coordinates, generating a quadric Q 	 RPN , has signature containing at least two
positive and two negative entries. In this case, the quadric Q carries isotropic lines
` 	 Q; actually, one can draw at least two such lines through any point of Q. We
denote the set of isotropic lines on Q by LNQ .
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Theorem 2.19. (Elementary hexahedron of an isotropic line congruence) Given
seven isotropic lines `, `i , `ij 2 LNQ .1 � i < j � 3/ such that ` intersects each of
`i , the space V123 spanned by `, `1, `2, `3 has dimension four, and each `i intersects
both `ij and `ik, generically there is a unique isotropic line `123 2 LNQ that intersects
all three `ij .

An important interplay between these two 3D systems is given in the following
result.

Theorem 2.20. (Extending a Q-net in a quadric to an isotropic line congruence)
Given a Q-net f W Zm ! Q, there exist discrete congruences of isotropic lines
` W Zm ! LNQ such that, for every u 2 Zm, we have f .u/ 2 `.u/. Such a congruence
is uniquely determined by prescribing an isotropic line `.0/ through the point f .0/.

3 Example 1: Plücker line geometry and asymptotic nets

3.1 Plücker line geometry In the standard way, projective subspaces of RP3

are projectivizations of vector subspaces of V D R
4. In particular, let x; y 2 RP

3

be any two different points, and let Ox; Oy 2 V be their arbitrary representatives in the
space of homogeneous coordinates. Then the line g D .xy/ 	 RP3 is the projec-
tivization of the two-dimensional vector subspace span. Ox; Oy/ 	 V .

After Grassmann and Plücker, the latter subspace can be identified with (a projec-
tivization of) the decomposable bivector

Og D Ox ^ Oy 2 ƒ2V:
Denote the homogeneous coordinates of a point x 2 RP

3 by

Ox D .x0; x1; x2; x3/ 2 R
4:

Choose a basis of ƒ2V consisting of ei ^ ej with 0 � i < j � 3. A coordinate
representation of the bivector Og in this basis is

Og D
X
.ij /

gij ei ^ ej ; gij D xiyj � xjyi :

The numbers .g01; g02; g03; g12; g13; g23/ are called Plücker coordinates of the line
g. They are defined projectively (up to a common factor). Not every bivector repre-
sents a line in RP

3, since not every bivector is decomposable. An obvious necessary
condition for a non-zero Og 2 ƒ2V to be decomposable is

Og ^ Og D 0:
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It can be shown that this condition is also sufficient. In the Plücker coordinates, this
condition can be written as

g01g23 � g02g13 C g03g12 D 0:
Summarizing, we have the following description of L3, the set of lines in RP3, within
Plücker line geometry. The six-dimensional vector space ƒ2V with the basis ej ^
ek is supplied with a nondegenerate scalar product defined by the following list of
nonvanishing scalar products of the basis vectors:

he0 ^ e1; e2 ^ e3i D �he0 ^ e2; e1 ^ e3i D he0 ^ e3; e1 ^ e2i D 1:
It is not difficult to verify that the signature of this scalar product is .3; 3/, so that we
can write ƒ2V ' R3;3. We set

L
3;3 D ˚ Og 2 ƒ2V W h Og; Ogi D 0
:

The points of the Plücker quadric P.L3;3/ are in a one-to-one correspondence with
elements of L3.

Fundamental features of this model include:

� Two lines g, h in RP
3 intersect if and only if their representatives in ƒ2V are

polar of each other:

h Og; Ohi D g01h23 � g02h13 C g03h12 C g23h01 � g13h02 C g12h03 D 0:
In this case the line ` 	 P.ƒ2V / through Œ Og� and Œ Oh� is isotropic: ` 	 P.L3;3/.

� Any isotropic line ` 	 P.L3;3/ corresponds to a one-parameter family of lines
in RP3 through a common point, which lie in one plane. Such a family of lines
is naturally interpreted as a contact element (a point and a plane through this
point) within the line geometry.

3.2 Asymptotic nets

Definition 3.1. (Discrete A-net) A map f W Zm ! R
3 is called an m-dimensional

discrete A-net (discrete asymptotic net) if for every u 2 Z
m all the points f .u˙ ei /,

i 2 f1; : : : ; mg, lie in some plane P.u/ through f .u/.

Two-dimensional A-nets were introduced by Sauer [23, 24] as a discrete analogue
of surfaces parametrized along asymptotic lines. In this case, the plane P.u/ is a dis-
crete analogue of the tangent plane to the surface f at the point f .u/. A discrete A-
net f is called non-degenerate, if all its elementary quadrilaterals .f; �if; �i�jf; �jf /
are non-planar. In principle, it would be possible to consider discrete A-nets in R

N

with N > 3, however this would not lead to an essential generalization, as any non-
degenerate A-net RN can be shown to lie in a three-dimensional affine subspace of
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RN . Note that Definition 3.1 belongs to projective geometry and could equally well
be formulated for the ambient space RP3.

Multidimensional A-nets are due to Doliwa [17]. The following result is based on
the famous theorem of Möbius about pairs of mutually inscribed tetrahedra (see [6],
[12]).

Theorem 3.2. (Consistency of discrete A-nets) Discrete A-nets are multidimension-
ally consistent.

As usual, this leads to a natural class of transformations with permutability prop-
erties, which can be seen, in the discrete context, as adding an additional lattice di-
mension to a given A-net.

Definition 3.3. (Discrete Weingarten transformation) A pair of discrete A-nets
f; f C W Zm ! R3 is related by a Weingarten transformation if, for every u 2 Zm,
the line .f .u/f C.u// lies in both tangent planes to f and f C at the points f .u/ and
f C.u/, respectively. The net f C is called a Weingarten transform of the net f .

We now want to demonstrate how these notions can be reduced to the previously
discussed notions of Q-nets and discrete line congruences in the context of Plücker
line geometry.

It is not difficult to realize that Definition 3.1 of a discrete asymptotic net allows
for the following reformulation:

Definition 3.4. (Discrete A-net, Euclidean model of line geometry) A map

.f;P/ W Zm ! fcontact elements in R
3g

is called an A-net if each pair of neighboring contact elements .f;P/, .fi ;Pi/ has
a line in common, that is, if the line .ffi / belongs to both planes P ;Pi . Such nets of
contact elements are called principal contact element nets.

Thus, one views an A-net as a surface consisting not just of points, but rather
of contact elements (points and tangent planes through these points). This can be
immediately translated into the language of the projective model of Plücker line geo-
metry, where contact elements are represented by the set L3;30 of isotropic lines in the
Plücker quadric P.L3;3/ 	 P.R3;3/.

Definition 3.5. (Discrete A-net, projective model of line geometry) A map ` W
Zm ! L3;30 is called an A-net if it is a discrete congruence of isotropic lines in
P.R3;3/, that is, if every two neighboring lines intersect:

`.u/\ `.uC ei / D Ol .i/.u/ 2 P.L3;3/; 8u 2 Z
m; 8i 2 f1; 2; : : : ; mg:

The elements of the focal nets Ol .i/ W Zm ! P.L3;3/ represent the lines .ffi / of
the A-net in R

3. We proceed with a re-formulation of Definition 3.3:
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Definition 3.6. (Discrete W-congruence, Euclidean model of line geometry) Two
discrete A-nets

.f;P/; .f C;PC/ W Zm ! fcontact elements in R
3g

are called Weingarten transforms of each other if for every pair of corresponding
contact elements .f;P/, .f C;PC/ the line l D .ff C/ belongs to both tangent
planes P , PC. The connecting lines l W Zm ! flines in R

3g of a Weingarten pair are
said to constitute a discrete W-congruence.

In the language of the projective model, this becomes:

Definition 3.7. (Discrete W-congruence, projective model of line geometry) Two
discrete A-nets `; `C W Zm ! L3;30 are called Weingarten transforms of each other if
these discrete congruences of isotropic lines are related by an F-transformation, that
is, if every two corresponding lines intersect:

`.u/\ `C.u/ D Ol.u/ 2 P.L3;3/; 8u 2 Z
m:

The intersection points Ol W Zm ! P.L3;3/ represent the lines of a discrete W-
congruence.

In the situation of Definition 3.6, both A-nets .f;P/ and .f C;PC/ are said to
be focal nets of the W-congruence l D .ff C/. More generally, a discrete A-net
.f;P/ is called focal for a discrete W-congruence l if each line l belongs to the
corresponding contact element .f;P/, that is, f 2 l and l 	 P . It is important
to note a terminological confusion which is unfortunately unavoidable for historical
reasons: a discrete W-congruence is not a discrete line congruence in the sense of
Definition 2.7, and a focal A-net of a discrete W-congruence is not a focal net in the
sense of Definition 2.11.

A characterization of discrete W-congruences which does not refer to their focal
A-nets follows immediately from Theorem 2.12:

Corollary 3.8. (W-congruences are Q-nets in the Plücker quadric) A generic W-
congruence of lines is represented by a Q-net in the Plücker quadric P.L3;3/.

In particular, four vectors . Ol; Oli ; Olij ; Olj / in R3;3 representing the four lines of an
elementary quadrilateral of a generic W-congruence are linearly dependent. This
means that the four lines .l; li ; lij ; lj / in R3 belong to a regulus (a hyperboloidic
family of lines).

As a corollary of Theorem 2.20, the following statement holds.

Theorem 3.9. (Focal A-nets of a discrete W-congruence) Given a generic discrete
W-congruence

l W Zm ! flines in R
3g;
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there exists a two-parameter family of discrete A-nets

.f;P/ W Zm ! fcontact elements in R
3g

such that, for every u 2 Z
m, the line l belongs to the contact element .f;P/, that is,

passes through the point f and lies in the plane P . Such a discrete A-net is uniquely
determined by prescribing a contact element .f;P/.0/ containing the line l.0/.

4 Example 2: Lie sphere geometry
and principal curvature nets

4.1 Lie geometry A classical source on Lie geometry is Blaschke’s book [5]. The
following geometric objects in the Euclidean space R3 are elements of Lie geometry:

– Oriented spheres. A sphere in R
3 with center c 2 R

3 and radius r > 0 is
described by the equation S D fx 2 R3 W jx � cj2 D r2g. It divides R3 in
two parts, inner and outer. If one denotes one of two parts of R3 as positive,
one comes to the notion of an oriented sphere. Thus, there are two oriented
spheres S˙ for any S . One can take the orientation of a sphere into account by
assigning a signed radius ˙r to it. For instance, one can assign positive radii
r > 0 to spheres with inward field of unit normals and negative radii r < 0 to
spheres with outward field of unit normals.

– Oriented planes. A plane in R3 is given by the equation P D fx 2 R3 W
hv; xi D dg, with a unit normal v 2 S

2 and d 2 R. Clearly, the pairs .v; d/ and
.�v;�d/ represent one and the same plane. It divides R3 in two halfspaces.
Denoting one of two halfspaces as positive, one arrives at the notion of an
oriented plane. Thus, there are two oriented planes P˙ for any P . One can
take the orientation of a hyperplane into account by assigning the pair .v; d/
to the plane with the unit normal v pointing into the positive halfspace.

– Points. One considers points x 2 R
3 as spheres of vanishing radius.

– Infinity. One compactifies the space R
3 by adding the point at infinity 1,

with the understanding that a basis of open neighborhoods of1 is given, e.g.,
by the outer parts of the spheres jxj2 D r2. Topologically the so-defined
compactification is equivalent to a sphere S3.

– Contact elements. A contact element of a surface in R
3 is a pair consisting of

a point x 2 R3 and an (oriented) plane P through x; alternatively, one can
use a normal vector v to P at x. In the framework of Lie geometry, a contact
element can be identified with a set (a pencil) of all spheres S through x which
are in an oriented contact with P (and with one another), thus sharing the
normal vector v at x, see Figure 10.6.

All these elements are modelled in Lie geometry as points, resp. lines, in the
5-dimensional projective space P.R4;2/ with the space of homogeneous coordinates
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xP

v

Figure 10.6. Contact element

R
4;2. The latter is the space spanned by 6 linearly independent vectors e1; : : : ; e6 and

equipped with the pseudo-Euclidean scalar product

hei ; ej i D
8<
:

1; i D j 2 f1; : : : ; 4g;
�1; i D j 2 f5; 6g;
0; i ¤ j:

It is convenient to introduce two isotropic vectors

e0 D 1
2
.e5 � e4/; e1 D 1

2
.e5 C e4/;

for which
he0; e0i D he1; e1i D 0; he0; e1i D �12 :

The models of the above elements in the space R4;2 of homogeneous coordinates are
as follows:

– Oriented sphere with center c 2 R
3 and signed radius r 2 R:

Os D c C e0 C .jcj2 � r2/e1 C re6:

– Oriented plane hv; xi D d with v 2 S
2 and d 2 R:

Op D v C 0 � e0 C 2de1 C e6:

– Point x 2 R3:
Ox D x C e0 C jxj2e1 C 0 � e6:

– Infinity1:
O1 D e1:

– Contact element .x; P /:
span. Ox; Op/:



262 Yuri B. Suris

In the projective space P.R4;2/, the first four types of elements are represented by the
points which are equivalence classes of the above vectors with respect to the relation
� � � , � D �� with � 2 R

� for �; � 2 R
4;2. A contact element is represented

by the line in P.R4;2/ through the points with representatives Ox and Op. We mention
several fundamentally important features of this model:

1. All the above elements belong to the Lie quadric P.L4;2/, where

L
4;2 D ˚� 2 R

4;2 W h�; �i D 0
:
Moreover, points of P.L4;2/ are in a one-to-one correspondence with oriented
spheres in R

3, including the degenerate cases: proper spheres correspond to
points of P.L4;2/ with both e0- and e6-components non-vanishing, planes cor-
respond to points of P.L4;2/ with vanishing e0-component, points correspond
to points of P.L4;2/ with vanishing e6-component, and infinity corresponds to
the only point of P.L4;2/ with both e0- and e6-components vanishing.

2. Two oriented spheres S1; S2 are in an oriented contact (i.e., are tangent to each
other with the unit normals at tangency pointing in the same direction) if and
only if jc1 � c2j2 D .r1 � r2/2, and this is equivalent to

hOs1; Os2i D 0:
3. An oriented sphere S D fx 2 R

3 W jx�cj2 D r2g is in an oriented contact with
an oriented plane P D fx 2 R

3 W hv; xi D dg if and only if hc; vi�r�d D 0,
and the latter equation is equivalent to

hOs; Opi D 0:
4. A point x can be considered as a sphere of radius r D 0 (in this case both

oriented spheres coincide). Incidence relation x 2 S with a sphere S (resp.
x 2 P with a plane P ) can be interpreted as a particular case of an oriented
contact of a sphere of radius r D 0 with S (resp. with P ), and it takes place if
and only if

h Ox; Osi D 0; resp: h Ox; Opi D 0:
5. For any plane P , we have h O1; Opi D 0. One can interpret planes as spheres (of

an infinite radius) through1. Analogously, the infinity1 can be considered
as a limiting position of any sequence of points x with jxj ! 1.

6. Any two spheres S1, S2 in an oriented contact determine a contact element
(their point of contact and their common tangent hyperplane). If Os1, Os2 in R

4;2

are representatives of S1, S2, then the line in P.R4;2/ through the correspond-
ing points in P.L4;2/ is isotropic, i.e., lies entirely on the Lie quadric P.L4;2/.
Such a line contains exactly one point whose representative Ox has vanishing e6-
component (and corresponds to x, the common point of contact of all spheres),
and, if x ¤ 1, exactly one point whose representative Op has vanishing e0-
component (and corresponds to P , the common tangent plane of all spheres).
In the case where an isotropic line contains O1, all its points represent parallel
planes, which constitute a contact element through1.
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Thus, if one considers planes as spheres of infinite radii, and points as spheres of
vanishing radii, then one can conclude that:

1. oriented spheres are in a one-to-one correspondence with points of the Lie
quadric P.L4;2/ in the projective space P.R4;2/;

2. oriented contact of two oriented spheres corresponds to orthogonality of (any)
representatives of the corresponding points in P.R4;2/.

3. contact elements of surfaces are in a one-to-one correspondence with isotropic
lines in P.R4;2/. We will denote the set of all such lines by L4;20 .

According to Klein’s Erlangen program, Lie geometry is the study of properties of
transformations which map oriented spheres (including points and planes) to oriented
spheres and, moreover, preserve the oriented contact of sphere pairs. In the projec-
tive model described above, Lie geometry is the study of projective transformations
of P.R4;2/ which leave P.L4;2/ invariant, and, moreover, preserve orthogonality of
points of P.L4;2/ (which is understood as orthogonality of their lifts to L

4;2 	 R
4;2;

clearly, this relation does not depend on the choice of lifts). Such transformations are
called Lie sphere transformations.

Since (non-)vanishing of the e0- or of the e6-component of a point in P.L4;2/
is not invariant under a general Lie sphere transformation, there is no distinction
between oriented spheres, oriented planes and points in Lie sphere geometry.

4.2 Curvature line parametrized surfaces in Lie geometry In Lie sphere
geometry, where the notions of points and planes make no sense, a surface is naturally
viewed as built of its contact elements. These contact elements are interpreted as
points of the surface and tangent planes (or, equivalently, normals) at these points.
This can be discretized in a natural way: a discrete surface is a map

.x; P / W Z2 ! fcontact elements of surfaces in R
3g;

or, in the projective model of Lie geometry, a map

` W Z2 ! L4;20 ; (10.1)

where, recall, L4;20 denotes the set of isotropic lines in P.R4;2/.
Lie sphere geometry is a natural framework to define an extremely important

parametrization of surfaces, namely the parametrization along curvature lines. To
see this, consider an infinitesimal neighborhoodU of a point x of an oriented smooth
surface in R3, and the pencil of spheres S.r/ of the signed radii r , touching the sur-
face at x, see Figure 10.7. The signed radius r is assumed positive if S.r/ lies on the
same side of the tangent plane as the normal n, and negative otherwise; S.1/ is the
tangent plane. For small r0 > 0 the spheres S.r0/ and S.�r0/ intersect U in x only.
The set of the touching spheres with this property (intersecting U in x only) has two
connected components: MC containing S.r0/ and M� containing S.�r0/ for small
r0 > 0. The boundary values

k1 D inf
n1
r
W S.r/ 2MC

o
; k2 D sup

n1
r
W S.r/ 2M�

o
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Figure 10.7. Principal directions through touching spheres.

are the principal curvatures of the surface in x. The directions in which S.r1/ and
S.r2/ touch U are the principal directions. Clearly, all ingredients of this description
are Möbius-invariant. Under a normal shift by distance d the centers of the principal
curvature spheres are preserved and their radii are shifted by d . This implies that the
principal directions and thus the curvature lines are preserved under normal shifts, as
well. Thus, these notions are Lie-invariant.

A Lie-geometric nature of the curvature line parametrization yields that it has
a Lie-invariant description. Such a description can be found in Blaschke’s book [5].
A surface in Lie geometry, as already said, is considered as consisting of contact
elements. Two infinitesimally close contact elements (sphere pencils) belong to the
same curvature line if and only if they have a sphere in common, which is the principal
curvature sphere.

The following definition is a literal discretization of this Lie-geometric description
of curvature line parametrized surfaces.

Definition 4.1. (Principal contact element nets, Euclidean model) A map

.x; P / W Z2 ! fcontact elements of surfaces in R
3g

is called a principal contact element net, if any two neighboring contact elements
.x; P /, .xi ; Pi / have a sphere S .i/ in common, that is, a sphere touching both planes
P , Pi at the corresponding points x, xi .

Thus, the normals to the neighboring planes P , Pi at the corresponding points x,
xi intersect at a point c.i/ (the center of the sphere S .i/), and the distances from c.i/

to x and to xi are equal, see Figure 10.8. The spheres S .i/, attached to the edges of
Z
2 parallel to the i -th coordinate axis, will be called principal curvature spheres of

the discrete surface.
A direct translation of Definition 4.1 into the projective model looks as follows:

Definition 4.2. (Principal contact element nets, projective model) A map ` W
Z
2 ! L4;20 is called a principal contact element net, if it is a discrete congruence

of isotropic lines in P.R4;2/, that is, any two neighboring lines intersect:

`.u/\ `.uC ei / D Os.i/.u/ 2 P.L4;2/; 8u 2 Z
2; 8i D 1; 2:
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Figure 10.8. Principal curvature sphere

A comparison of the latter definition with Definition 3.5 shows that the only dif-
ference between the principal contact element nets and discrete asymptotic nets is the
signature of the basic quadric of the projective model of the corresponding geometry.
This is an instance of the famous Lie correspondence between spheres and lines in
R3.

In the projective model, the representatives of the principal curvature spheres S .i/

of the i -th coordinate direction build the corresponding focal net of the line congru-
ence `;

Os.i/ W Z2 ! P.L4;2/; i D 1; 2; (10.2)

cf. Definition 2.11. According to Theorem 2.12, both focal nets are Q-nets in P.R4;2/.
This motivates the following definition.

Definition 4.3. (Discrete R-congruence of spheres) A map

S W Zm ! foriented spheres in R
3g

is called a discrete R-congruence (Ribaucour congruence) of spheres, if the corre-
sponding map

Os W Zm ! P.L4;2/

is a Q-net in P.R4;2/.

Corollary 4.4. (Curvature spheres build an R-congruence) For a discrete contact
element net, the principal curvature spheres of the i -th coordinate direction (i=1,2)
build a two-dimensional discrete R-congruence.

Turning to transformations of principal contact element nets, we introduce the
following definition.
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Figure 10.9. Ribaucour transformation

Definition 4.5. (Ribaucour transformation, projective model) Two principal con-
tact element nets `; `C W Z2 ! L4;20 are called Ribaucour transforms of one another,
if these discrete congruences of isotropic lines are in the relation of F-transformation,
that is, if any pair of the corresponding lines intersect:

`.u/\ `C.u/ D Os.u/ 2 P.L4;2/; 8u 2 Z
2: (10.3)

Its direct translation into the geometric language gives:

Definition 4.6. (Ribaucour transformation, Euclidean model) Two principal con-
tact element nets

.x; P /; .xC; PC/ W Z2 ! fcontact elements of surfaces in R
3g

are called Ribaucour transforms of one another, if any two corresponding contact
elements .x; P / and .xC; PC/ have a sphere S in common, that is, a sphere which
touches both planes P , PC at the corresponding points x, xC (see Figure 10.9).

Spheres S of a Ribaucour transformation are attached to the vertices u of the
lattice Z

2, or, better, to the “vertical” edges connecting the vertices .u; 0/ and .u; 1/
of the lattice Z

2 � f0; 1g. In the projective model, their representatives

Os W Z2 ! P.L4;2/ (10.4)

build the focal net of the three-dimensional line congruence for the third coordinate
direction. From Theorem 2.12 there follows:

Corollary 4.7. (Spheres of a Ribaucour transformation build an R-congruence)
The spheres of a generic Ribaucour transformation build a discrete R-congruence.
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5 Example 3: Möbius geometry and circular nets

5.1 Möbius geometry Blaschke’s book [5] serves also as a classical source on
Möbius geometry.

Möbius geometry is a subgeometry of Lie geometry, with points distinguishable
among all spheres as those of radius zero. Thus, Möbius geometry studies properties
of spheres invariant under the subgroup of Lie sphere transformations preserving the
set of points. In the projective model, points of R

3 are distinguished as points of
P.L4;2/ with vanishing e6-component. (Of course, one could replace here e6 by
any time-like vector.) Thus, Möbius geometry studies the subgroup of Lie sphere
transformations preserving the subset of P.LNC1;2/ with vanishing e6-component.
The following geometric objects in R6 are elements of Möbius geometry.

– (Non-oriented) spheres S D fx 2 R
3 W jx � cj2 D r2g with centers c 2 R

3

and radii r > 0.

– (Non-oriented) planes P D fx 2 R
3 W hv; xi D dg, with unit normals v 2 S

2

and d 2 R.

– Points x 2 R
3.

– Infinity1 which compactifies R3 into S
3.

In modelling these elements, one can use the Lie-geometric description and just omit
the e6-component. The resulting objects are points of the four-dimensional projective
space P.R4;1/ with the space of homogeneous coordinates R

4;1 (classically called
pentaspherical coordinates). The latter is the space spanned by five linearly indepen-
dent vectors e1; : : : ; e5 and equipped with the Minkowski scalar product

hei ; ej i D
8<
:

1; i D j 2 f1; : : : ; 4g;
�1; i D j D 5;
0; i ¤ j:

We continue to use the notation

e0 D 1

2
.e5 � e4/; e1 D 1

2
.e5 C e4/

in the context of Möbius geometry. The above elements are modelled in the space
R4;1 of homogeneous coordinates as follows:

– Sphere with center c 2 R
3 and radius r > 0:

Os D c C e0 C .jcj2 � r2/e1:

– Plane hv; xi D d with v 2 S2 and d 2 R:

Op D v C 0 � e0 C 2de1:
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– Point x 2 R3:
Ox D x C e0 C jxj2e1:

– Infinity1:
O1 D e1:

In the projective space P.R4;1/ these elements are represented by points which are
equivalence classes of the listed vectors with respect to the usual relation � � � ,
� D �� with � 2 R

� for �; � 2 R
4;1. Fundamental features of these identifications

are:
1. The infinity O1 can be considered as a limit of any sequence of Ox for x 2 R

3

with jxj ! 1. Elements x 2 R3 [ f1g are in a one-to-one correspondence
with points of the projectivized light cone P.L4;1/, where

L
4;1 D ˚� 2 R

4;1 W h�; �i D 0
:
Points x 2 R3 correspond to points of P.L4;1/ with a non-vanishing e0-
component, while1 corresponds to the only point of P.L4;1/ with vanishing
e0-component.

2. Spheres Os and planes Op belong to P.R
4;1
out /, where

R
4;1
out D

˚
� 2 R

4;1 W h�; �i > 0

is the set of space-like vectors of the Minkowski space R4;1. Planes can be
interpreted as spheres (of infinite radius) through1.

3. Two spheres S1; S2 with centers c1; c2 and radii r1; r2 intersect orthogonally,
if and only if jc1 � c2j2 D r21 C r22 , which is equivalent to

hOs1; Os2i D 0:
Similarly, a sphere S intersects orthogonally a plane P if and only if its center
lies in P : hc; vi � d D 0, which is equivalent to

hOs; Opi D 0:

4. A point x can be considered as a limiting case of a sphere with radius r D 0.
An incidence relation x 2 S with a sphere S (resp. x 2 P with a plane P ) can
be interpreted as a particular case of an orthogonal intersection of a sphere of
radius r D 0 with S (resp. with P ), and it takes place if and only if

h Ox; Osi D 0; resp: h Ox; Opi D 0:

Note that a sphere S can also be interpreted as the set of points x 2 S . Cor-
respondingly, it admits, along with the representation Os, the dual representation as
a transversal intersection of P.L4;1/ with the projective 3-space P.Os?/, polar to the
point Os with respect to P.L4;1/; here, of course, Os? D f Ox 2 R

4;1 W hOs; Oxi D 0g. This
can be generalized to model circles.
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– Circles. A circle is a (generic) intersection of two spheres S1, S2. The in-
tersection of two spheres represented by Os1; Os2 2 R

4;1
out is generic if the two-

dimensional linear subspace of R4;1 spanned by the Os1, Os2 is space-like:

† D span.Os1; Os2/ 	 R
4;1
out :

As a set of points, this circle is represented as P.L4;1 \†?/, where

†? D
2\
iD1
Os?
i D

n
Ox 2 R

4;1 W hOs1; Oxi D hOs2; Oxi D 0
o

is a three-dimensional linear subspace of R4;1 of signature .2; 1/.

Dually, through any three points x1; x2; x3 2 R
3 in general position one can

draw a unique circle. It corresponds to the three-dimensional linear subspace

†? D span. Ox1; Ox2; Ox3/;
of signature .2; 1/, with three linearly independent isotropic vectors Ox1; Ox2; Ox3 2
L
4;1. In the polar formulation, this circle corresponds to the two-dimensional

space-like linear subspace

† D
3\
iD1
Ox?
i D

n
Os 2 R

4;1 W hOs; Ox1i D hOs; Ox2i D hOs; Ox3i D 0
o
:

Möbius geometry is the study of properties of (non)-oriented spheres invariant
with respect to projective transformations of P.R4;1/ which map points to points, i.e.,
which leave P.L4;1/ invariant. Such transformations are called Möbius transforma-
tions.

Since the (non-)vanishing of the e1-component of a point in P.RNC1;1/ is not
invariant under a general Möbius transformation, there is no distinction in Möbius
geometry between hyperspheres and hyperplanes.

5.2 Circular nets Caution: in this section, the notation Ox refers to the Möbius-
geometric representatives in L

4;1, and not to the Lie-geometric ones in L
4;2. The

former are obtained from the latter one by omitting the (vanishing) e6-component.
In Möbius geometry, a surface is viewed simply as built of points. A discrete

surface is a map
x W Z2 ! R

3;

or, in the projective model, a map

Ox W Z2 ! P.L4;1/:

We now introduce the notion of circular nets [7, 13, 21] whose m D 2 particu-
lar case can be considered as a Möbius-geometric discretization of curvature line
parametrized surfaces. These nets can be defined in two different ways.
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Figure 10.10. Normals of two neighboring quadrilaterals of a circular net intersect.

Definition 5.1. (Circular net, Euclidean model) A net x W Zm ! R
3 is called

circular, if the vertices of any elementary quadrilateral .x; xi ; xij ; xj / (at any u 2 Zm

and for all pairs 1 � i ¤ j � m) lie on a circle (in particular, are co-planar).

Definition 5.2. (Circular net, projective model) A net x W Zm ! R3 is called
circular, if the corresponding Ox W Zm ! P.L4;1/ is a Q-net in P.R4;1/.

To see that Definitions 5.1 and 5.2 are equivalent, we observe that the linear sub-
space of R4;1 spanned by the isotropic vectors Ox, Oxi , Oxj , Oxij is three-dimensional. Its
orthogonal complement is therefore two-dimensional and lies in R

4;1
out . Therefore, it

represents a circle through the points x, xi , xj , xij .
Two-dimensional circular nets (m D 2) are discrete analogues of the curvature

lines parametrized surfaces. It is natural to regard the lines passing through the cen-
ters of the circles orthogonally to their respective planes as the normals to the discrete
circular surface. These normals behave in a way characteristic for the normals to
a smooth surface along curvature lines; namely, for any two neighboring quadrilat-
erals of a circular net, the discrete normals intersect. Indeed, both normals lie in the
bisecting orthogonal plane of the common edge. The intersection point is the center
of a sphere containing both circles; see Figure 10.10.

On the other hand, circular nets are described by a 3D system, as follows from the
next result.

Theorem 5.3. (Elementary hexahedron of a circular net) Given seven points x,
xi , and xij .1 � i < j � 3/ in R

3, such that each of the three quadruples
.x; xi ; xj ; xij / lies on a circle Cij , define three new circles �iCjk as those passing
through the triples .xi ; xij ; xik/, respectively. Then these new circles intersect at one
point, see Figure 10.11:

x123 D �1C23 \ �2C31 \ �3C12 :
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Figure 10.11. Construction of an elementary hexahedron of a circular net via the Miquel theorem

This is a particular case of Theorem 2.15, applied to the quadric P.L4;1/ under-
lying the Möbius geometry. This shows also that the 3D system describing circular
nets is multidimensionally consistent. In particular, we have:

Theorem 5.4. (Circular reduction of Q-nets) If the coordinate surfaces of a Q-net
f W Zm ! R

N are circular surfaces, then f is a circular net.

An important conceptual remark consists in the possibility of an elementary ge-
ometric proof of Theorem 5.3, based on the classical Miquel theorem, see Figure
10.11.

As usual, the multidimensional consistency yields the possibility of introducing
transformations of circular nets with permutability properties, which is nothing but
adding an additional dimension to the system under consideration. One arrives at the
Möbius-geometric version of the discrete Ribaucour transformations:

Definition 5.5. (Discrete Ribaucour transformation) Two m-dimensional circular
nets f; f C W Zm ! R

N are related by a Ribaucour transformation if the four points
f , �if , f C and �if C are concircular at any u 2 Z

m and for any 1 � i � m. The
net f C is called a Ribaucour transform of the net f .

6 Example 4: Laguerre geometry and conical nets

6.1 Laguerre geometry Blaschke’s book [5] serves as the indispensable classi-
cal source also in the case of Laguerre geometry.

Laguerre geometry is a subgeometry of Lie geometry, with planes distinguishable
among all spheres, as spheres through 1. Thus, Laguerre geometry studies prop-
erties of spheres invariant under the subgroup of Lie sphere transformations which
preserve the set of planes. The following objects in R

3 are elements of the Laguerre
geometry.
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– (Oriented) spheres S D fx 2 R3 W jx � cj2 D r2g with centers c 2 R3 and
signed radii r 2 R, can be put into correspondence with 4-tuples .c; r/.

– Points x 2 R
3 are considered as spheres of radius zero, and are put into corre-

spondence with 4-tuples .x; 0/.

– (Oriented) planes P D fx 2 R3 W hv; xi D dg, with unit normals v 2 S2 and
d 2 R, can be put into correspondence with 4-tuples .v; d/.

In the projective model of Lie geometry, planes are distinguished as elements
of P.L4;2/ with vanishing e0-component. (Of course, one could replace here e0 by
any isotropic vector.) Thus, Laguerre geometry studies the subgroup of Lie sphere
transformations preserving the subset of P.L4;2/ with vanishing e0-component.

The scene of the Blaschke cylinder model of Laguerre geometry consists of two
four-dimensional projective spaces, whose spaces of homogeneous coordinates,R3;1;1

and .R3;1;1/�, are dual to one another and arise from R
4;2 by “forgetting” the e0-

components. Thus, R3;1;1 is spanned by five linearly independent vectors e1, e2,
e3, e6, e1, and is equipped with a degenerate bilinear form of signature .3; 1; 1/
in which the above vectors are pairwise orthogonal, the first three being space-like:
hei ; eii D 1 for 1 � i � 3, while the last two are time-like and isotropic, respec-
tively: he6; e6i D �1 and he1; e1i D 0. Similarly, .R3;1;1/� is assumed to have
an orthogonal basis consisting of e1, e2, e3, e6, e0, again with an isotropic last vec-
tor: he0; e0i D 0. Note that one and the same symbol h�; �i is used to denote two
degenerate bilinear forms in our two spaces. We will overload this symbol even more
and use it also for the (non-degenerate) pairing between these two spaces, which is
established by setting he0; e1i D �12 , additionally to the above relations. (Note that
a degenerate bilinear form cannot be used to identify a vector space with its dual.)

We have

– A plane P D .v; d/ is modelled as a point in the space P.R3;1;1/ with a rep-
resentative

Op D v C 2de1 C e6:

– A sphere S D .c; r/ is modelled as a point in the space P
�
.R3;1;1/�

�
with

a representative
Os D c C e0 C re6:

The preferred space is P.R3;1;1/ whose points model planes P 	 RN . A sphere
S 	 R

N is then modelled as a hyperplane f� 2 P.RN;1;1/ W hOs; �i D 0g in the space
P.RN;1;1/. The following are basic features of this model:

1. Oriented planes P 	 RN are in a one-to-one correspondence with points Op of
the quadric P.L3;1;1/, where

L
3;1;1 D ˚� 2 R

N;1;1 W h�; �i D 0
:
2. Two oriented planes P1; P2 	 R

3 are in an oriented contact (parallel), if and
only if their representatives Op1, Op2 differ by a vector parallel to e1.
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3. An oriented sphere S 	 R3 is in an oriented contact with an oriented hyper-
plane P 	 R

N , if and only if Op 2 Os, that is, if h Op; Osi D 0. Thus, a sphere S is
interpreted as its set of tangent planes.

The quadric P.L3;1;1/ is diffeomorphic to the Blaschke cylinder

Z D ˚.v; d/ 2 R
4 W jvj D 1
 D S

2 � R 	 R
4:

Two points of this cylinder represent parallel planes if they lie on one straight line
generator of Z parallel to its axis. In the ambient space R

4 of the Blaschke cylinder,
oriented spheres S 	 RN are in one-to-one correspondence with planes non-parallel
to the axis of Z:

S � ˚.v; d/ 2 R
4 W hc; vi � d � r D 0
:

An intersection of such a hyperplane with Z consists of points in Z which represent
tangent planes to S 	 R

N .

6.2 Conical nets Caution: in this section, the notation Op refers to the Laguerre-
geometric representatives in L3;1;1, and not to the Lie-geometric ones in L4;2. The
former are obtained from the latter by omitting the (vanishing) e0-component.

In Laguerre geometry, one thinks of a surface as of the envelope of its tangent
planes. Correspondingly, a general discrete surface in the Laguerre geometry is just
a net of oriented planes,

P W Zm ! foriented planes in R
3g:

A discrete analogue of curvature line parametrized surfaces is given by the m D 2
case of the following definition [22].

Definition 6.1. (Conical net, Euclidean model) A net

P W Zm ! foriented planes in R
3g

is called conical, if at any u 2 Z
m and for all pairs 1 � i ¤ j � m the four planes

P;Pi ; Pij ; Pj are in oriented contact with a cone of revolution (in particular, intersect
at the tip of the cone), see Figure 10.12.

One can think of two-dimensional conical nets as another (besides circular nets)
discretization of curvature line parametrized surfaces. The axes of the cones of rev-
olution mentioned in Definition 6.1 are thought of as discrete normals to the surface,
assigned to the elementary squares of the lattice Z2. For any two neighboring cones,
there is a unique sphere touching both of them. The center of this sphere is the in-
tersection point of the axes of the cones; see Figure 10.13. Indeed, two neighboring
quadruples of planes share two planes, and the plane bisecting the dihedral angle
between these two contains the axes of both cones, which therefore intersect (the
orientations of the planes fix one of the two dihedral angles).
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Figure 10.12. Four planes of a conical net.

Figure 10.13. Axes of two neighboring cones of a conical net intersect.

A simple geometric criterion for a net P of planes to be conical can be given in
terms of the Gauss map of P . Recall that an oriented plane P in R

3 can be described
by a pair .v; d/ 2 S

2 � R, where

P D fx 2 R
3 W hv; xi D dg;

so that v 2 S
2 is the unit normal vector to P , and d is the distance of P to the origin.

The net
v W Zm ! S

2;

comprised by the (directed) unit normal vectors v to the planes P , is called the Gauss
map.

Theorem 6.2. (Conical nets have circular Gauss maps) A net of planes P W Zm !
foriented planes in R3g is conical if and only if any four neighboring planes have
a point in common, and the elementary quadrilaterals of its Gauss map v W Zm ! S

2

are planar, that is, if the Gauss map is a circular net in S
2.
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Indeed, the angles between all four unit vectors v, vi , vj , vij and the axis of the
cone are equal; therefore their tips are at an equal (spherical) distance from the point
of S2 representing the cone axis direction. Thus, the quadrilateral .v; vi ; vij ; vj / in
S2 is circular, with the spherical center of the circle given by the direction of the axis
of the tangent cone.

It is important to observe that Definition 6.1 actually belongs to Laguerre ge-
ometry. This means that the property of touching a common cone of revolution for
given planes is invariant under Laguerre transformations, in particular, under shifting
all the planes by the same distance in their corresponding normal directions (nor-
mal shift). Recall that a plane P D fx 2 R

3 W hv; xi D dg is represented in the
projective model of Laguerre geometry (Blaschke cylinder model) by the point in
P.L3;1;1/ 	 P.R3;1;1/ with representative Op D v C 2de1 C e6 in the space of
homogeneous coordinates.

Theorem 6.3. (Conical net, Laguerre-geometric characterization) A net

P W Zm ! foriented planes in R
3g

is conical if and only if the corresponding points Op W Zm ! P.L3;1;1/ form a Q-net
in P.R3;1;1/.

Thus, conical nets constitute a further example of a multidimensional Q-net re-
stricted to a quadric (the absolute quadric in the projective model of Laguerre geom-
etry).

7 Discrete curvature line parametrization
in various sphere geometries

We have seen that the description of a discrete surface in Lie sphere geometry (through
contact elements, i.e., points and tangent planes) contains more information than de-
scription of a discrete surface in Möbius geometry (through points only) or in La-
guerre geometry (through tangent planes only). Actually, the former merges the two
latter ones.

To clarify the relations between these various descriptions, we consider the geom-
etry of an elementary quadrilateral of contact elements of a principal contact element
net, consisting of ` � .x; P /, `1 � .x1; P1/, `2 � .x2; P2/, and `12 � .x12; P12/.

We leave aside a degenerate umbilic situation, when all four lines have a com-
mon point and span a four-dimensional space. Geometrically, this means that one is
dealing with four contact elements of a sphere S 	 R3. In this situation, one can-
not draw any further conclusion about the four points x; x1; x2; x12 on the sphere S :
they can be arbitrary. Thus, we assume that the principal contact element nets under
consideration are generic in the sense that they do not contain umbilic quadruples.
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Theorem 7.1. (Points of principal contact element nets form circular nets) For
a principal contact element net

.x; P / W Z2 ! fcontact elements of surfaces in R
3g;

its points x W Z2 ! R3 form a circular net.

Indeed, in the non-umbilic situation, the space spanned by the four lines
`; `1; `2; `12 is three-dimensional. The four elements Ox; Ox1; Ox2; Ox12 2 P.L4;2/ cor-
responding to the points x; x1; x2; x12 2 R

3 are obtained as the intersection of the
four isotropic lines `; `1; `2; `12 with the projective hyperplane P.e?

6 / in P.R4;2/.
Therefore, the four elements Ox; Ox1; Ox2; Ox12 lie in a plane. Omitting the inessential
(vanishing) e6-component, we arrive at a planar quadrilateral in the Möbius sphere
P.L4;1/.

Theorem 7.2. (Tangent planes of principal contact element nets form conical
nets) For a principal contact element net

.x; P / W Z2 ! fcontact elements of surfaces in R
3g;

its tangent planes P W Z2 ! foriented planes in R3g form a conical net.

Indeed, the four elements Op; Op1; Op2; Op12 2 P.L4;2/ corresponding to the planes
P;P1; P2; P12 2 R

3 are obtained as the intersection of the four isotropic lines
`; `1; `2; `12 with the projective hyperplane P.e?1/ in P.R4;2/. Therefore, the four
elements Op; Op1; Op2; Op12 also lie in a plane.

In view of Theorems 7.1, 7.2, it is natural to ask whether, given a circular net
x W Z2 ! R3, or a conical net P W Z2 ! foriented planes in R3g, there exists
a principal contact element net

.x; P / W Z2 ! fcontact elements of surfaces in R
3g;

with half of the data (x or P ) prescribed. A positive answer to this question is a corol-
lary of the following general theorem.

Theorem 7.3. (Extending R-congruences of spheres to principal contact element
nets) Given a discrete R-congruence of spheres

S W Z2 ! foriented spheres in R
3g;

there exists a two-parameter family of principal contact element nets

.x; P / W Z2 ! fcontact elements of surfaces in R
3g

such that S belongs to the contact element .x; P /, i.e., P is the tangent plane to
S at the point x 2 S , for all u 2 Z2. Such a principal contact element net is
uniquely determined by prescribing a contact element .x; P /.0; 0/ containing the
sphere S.0; 0/.
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Figure 10.14. Elementary quadrilateral of a curvature line parametrized surface with vertices x and
tangent planes P in the projective model. The vertices x build a circular net (Möbius geometry),
and lie in the planes P building a conical net (Laguerre geometry). Contact elements .x; P / are
represented by isotropic lines ` (Lie geometry). Principal curvature spheres S .i/ pass through pairs
of neighboring points x; xi and are tangent to the corresponding pairs of planes P; Pi .

Since the representatives Ox in P.L4;2/ of a circular net x W Z2 ! R
3 form a Q-net

in P.R4;2/, and the same holds for the representatives Op in P.L4;2/ of a conical net
P W Z2 ! foriented planes in R3g, we come to the following conclusion.

Corollary 7.4. (Extending circular and conical nets to principal contact element
nets)

1. Given a circular net x W Z2 ! R
3, there exists a two-parameter family of

conical nets P W Z2 ! fplanes in R
3g such that x 2 P for all u 2 Z

2, and the
contact element net

.x; P / W Z2 ! fcontact elements of surfaces in R
3g

is principal. Such a conical net is uniquely determined by prescribing a plane
P.0; 0/ through the point x.0; 0/.

2. Given a conical net P W Z2 ! foriented planes in R3g, there exists a two-
parameter family of circular nets x W Z2 ! R

3 such that x 2 P for all
u 2 Z

2, and the contact element net

.x; P / W Z2 ! fcontact elements of surfaces in R
3g

is principal. Such a circular net is uniquely determined by prescribing a point
x.0; 0/ in the plane P.0; 0/.

These relations are summarized in Figure 10.14.
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8 Conclusion

In this chapter, we have demonstrated several examples illustrating a spectacular ap-
plication of the classical but ever young ideas of Felix Klein’s Erlangen program to an
active research area of discrete differential geometry. The combination of the trans-
formation group principle with the multidimensional consistency principle can serve
as the guiding and organizing principles of this new area, allowing one to system-
atically discover correct discretizations of the complicated constructions of classical
differential geometry. On this way, one achieves a tremendous simplification and
a deeper understanding of both the geometry and the accompanying integrable sys-
tems. Needless to say that the examples here by no means exhaust the area; on the
contrary, many more are already known (and can be looked up, for instance, in [12]),
and still more await to be discovered. The ideas of the Erlangen program will guide
us on this way for years to come.
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1 Introduction

Felix Klein’s Erlangen programme, which was introduced in 1872 in his work Ver-
gleichende Betrachtungen über neuere geometrische Forschungen [32] has proven
influential in the development of geometry and also found numerous applications
in mathematical physics. In particular, his idea to characterise different geometries
in terms of group invariants led to a common description of the geometrical spaces
known in his time in the common framework of homogeneous spaces, and made the
notion of symmetries gain importance in physics.

Applications of this idea in physics were realised and investigated by himself
later, in particular in the context of Einstein’s theory of special and general relativity.
In his article Über die Differentialgesetze für Erhaltung von Impuls und Energie in
der Einsteinschen Gravitationstheorie [34], he related the notion of invariants to the
conservation of momentum and energy in general relativity. In his work Über die
geometrischen Grundlagen der Lorentzgruppe [33] he linked the physical concept of
relativity in special relativity to the theory of invariants of the Lorentz group:

Was die modernen Physiker Relativitätstheorie nennen, ist die Invariantentheorie
des vierdimensionalen Raum-Zeit-Gebietes, x, y, z, t (der Minkowskischen Welt)
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gegenüber einer bestimmten Gruppe von Kollineationen, eben der “Lorentzgruppe”;
oder allgemeiner, und nach der anderen Seite gewandt: “Man könnte, wenn man
Wert darauf legen will, den Namen ‘Invariantentheorie relativ zu einer Gruppe von
Transformationen’ sehr wohl durch das Wort ,Relativitätstheorie bezüglich einer
Gruppe’ ersetzen.

A systematic understanding of the relation between symmetries, conserved quan-
tities and invariants in physics was established in 1918 by Emmy Noether in her
article Invariante Variationsprobleme [43]. In this article, she derived the relation be-
tween symmetries of physical systems and conserved quantities in a general setting,
namely for physical systems governed by an action functional. Her work [43] uses
the mathematical framework of Lie’s transformation groups as well as the concept of
invariants and also cites Klein’s articles on relativity [33, 34].

The notion of symmetry remains central in modern mathematical physics, al-
though in a more general and larger sense than the physical symmetries considered
by Noether and Klein. Examples of this are the gauge theories which describe the
electromagnetic, weak and strong interaction. In this setting, the relevant symmetries
are Lie groups which act as structure groups of bundles, namely the abelian group
U.1/ in electromagnetism and the non-abelian groups SU.2/ and SU.3/ for, respec-
tively, the weak and strong interaction. The systematic formulation of gauge theories
for non-abelian gauge groups is due to Yang and Mills [48].

In contrast to the physical symmetries considered by Noether and Klein, the gauge
symmetries in these theories do not relate different physical states but equivalent de-
scriptions of the same physical state. The physical or gauge invariant phase space
of these theories, e.g. the space of physical states, is not the set of solutions of the
equations of motion but the quotient of this space by the group of gauge symmetries.

A more general notion of such non-physical or “gauge” symmetries relating dif-
ferent descriptions of a physical state was introduced by Dirac in his work on con-
strained mechanical systems [24, 25], which showed that the notion of a gauge sym-
metry is tied to the presence of constraints on the variables in the action functional.
The framework of constrained systems encompasses finite-dimensional mechanical
systems as well as gauge and field theories and Einstein’s theory general relativity.
(For an overview see [31] and [30]. An accessible introduction to symmetries in
gauge theories and in general relativity from the perspective of differential geometry
is given in [28].)

Many theories in modern mathematical physics are examples of such constrained
systems. In particular this includes topological field theories such as Chern–Simons
gauge theory, certain conformal field theories and three-dimensional gravity. In all
of these cases, the underlying theory is a gauge field theory, whose group of gauge
symmetries is so large that the physically distinct solutions of the field equations can
be classified completely. Despite the fact that they are field theories, these theories
exhibit finite-dimensional gauge invariant phase spaces. This has important implica-
tions in their quantisation and gives rise to interesting mathematical structures. Ex-
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amples are the appearance of knot polynomials and manifold invariants in the quan-
tisation of Chern–Simons theories [46, 44], the representation theoretical structures
in conformal field theories and recent results triggered by the quantisation of moduli
spaces such as Lie group-valued moment maps [5]. A common feature of these devel-
opments is that they establish interesting relations between purely algebraic objects
such as quantum groups or representations of fundamental groups of surfaces and the
geometrical properties of the associated field theories.

In this chapter, we discuss applications of Klein’s ideas in the context of three-
dimensional (3d) gravity. Three-dimensional gravity is Einstein’s theory of general
relativity with one time and two space dimensions and is closely related to Chern–
Simons gauge theory [1, 47]. As its phase space is finite-dimensional, this theory
serves as a toy model for quantum gravity in higher dimensions and allows one to
investigate conceptual questions of quantum gravity in a theory that can be quantised
rigorously. Besides this physical applications, the theory is also interesting in its own
right due to its rich mathematical structure and its relation with Chern–Simons gauge
theory [1, 47], moduli spaces of flat connections and Teichmüller theory [35].

Three-dimensional gravity is related to Klein’s ideas insofar as any vacuum space-
time is obtained as a quotient of (certain subsets of) homogeneous spaces by a discrete
subgroup of their isometry groups [35]. This description in terms of homogeneous
spaces establishes a link with Klein’s Erlangen programme [32]. Moreover, in the
case of vanishing cosmological constant, the relevant homogeneous space is three-
dimensional Minkowski space. This implies that in that case, diffeomorphism equiv-
alence classes of vacuum solutions of Einstein equations can be described entirely
within the framework of special relativity, which is the context of Klein’s work [33].
A further link with Klein’s ideas is the fact that many physics problems in this theory
involve the relation of group-theoretical or algebraic data, which classifies the space-
times and serves as the fundamental building block in quantisation, to the geometry
of the spacetimes, which is linked to physical measurements by observers.

The chapter is structured as follows. Section 2 introduces the relevant background
on the geometry of spacetimes in 3d gravity and their classification. It also discusses
the relation of the gauge invariant phase space of 3d gravity to certain moduli spaces
of flat connections and summarises known results on its symplectic structure.

In section 3, we discuss examples of physics questions arising in three- and higher-
dimensional quantum gravity, namely the question of reconstructing spacetime ge-
ometry and the outcome of measurements made by observers from algebraic data
and the question about the role of quantum group symmetries in a quantum theory of
gravity. These questions are addressed in the framework of 3d gravity in Sections 4
and 5, respectively. Section 4 explains how measurements made by observers such
as frequency shifts or return times of lightrays are related to the classifying data of
the theory and allows one to reconstruct it. Section 5 discusses how a gauge fixing
procedure for the phase space of 3d gravity gives rise to dynamical quantum group
symmetries.
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2 Gravity in three dimensions

2.1 Geometry of spacetimes As in higher dimensions, the dynamical variable
of 3d gravity is a Lorentz metric on a three-dimensional manifold M , and the equa-
tions of motion are the Einstein equations. These equations take the same form as in
higher dimensions

Ric�� � 1
2
g��R Cƒg�� D 8�GT�� ; (11.1)

where g�� denotes a metric of signature .�1; 1; 1/ on M , Ric�� its Ricci curvature,
R the scalar curvature,ƒ and G, respectively, the cosmological and the gravitational
constant and T�� the stress-energy tensor.

The distinguishing feature in three dimensions is that the Ricci curvature of a three-
dimensional (semi-)Riemannian manifold determines its sectional and Riemann cur-
vature. This implies that the theory has no local gravitational degrees of freedom and
only a finite number of global degrees of freedom due to the matter content and topol-
ogy of the spacetime. In particular, any vacuum solution of the Einstein equations,
i.e. a solution for vanishing of the stress-energy tensor T�� , is locally isometric to one
of three model spacetimes. Depending on the cosmological constant ƒ, these model
spacetimes are three-dimensional de Sitter space dS3 (ƒ > 0), Minkowski space M3

(ƒ D 0) and three-dimensional anti-de Sitter space AdS3 (ƒ < 0).
Note that all of these model spacetimes are homogeneous spaces (see Table 11.1),

which implies that in the spirit of Klein, their geometric properties can be formu-
lated entirely in terms of Lie groups. In all cases the corresponding quotients are
taken with respect to the subgroup SO0.2; 1/ Š PSL.2;R/, which is the proper or-
thochronous Lorentz group in three dimensions. Consequently, all isometry groups of
the model spacetimes contain the group SO0.2; 1/ as a subgroup, where the inclusion
SO0.2; 1/! G is the obvious one for ƒ � 0 and the diagonal one for ƒ < 0.

Under certain additional assumptions on their causality properties, vacuum space-
times can be classified completely. The following classification theorem is due to
Mess [35].

Theorem 2.1. [35, 7] For ƒ � 0, any maximally globally hyperbolic vacuum space-
time with a compact Cauchy surface S of genus g � 2 is determined uniquely by
a group homomorphism h W �1.S/! G whose Lorentzian component defines a reg-
ular representation of �1.S/. Conversely, two vacuum solutions are isometric if and
only if the associated group homomorphisms are related by conjugation. The set of
isometry classes of vacuum solutions of the Einstein equations is therefore given by

MG;S
0 D Hom0.�1.S/; G/=G

where the index 0 stands for the restriction to regular representations and G denotes
the isometry group from Table 11.1.

Note that a similar classification result holds forƒ > 0, but in that case, a discrete
parameter is needed in addition to the group homomorphism to classify the vacuum
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model spacetime X isometry group G homogeneous space

ƒ > 0 dS3 SO0.3; 1/ SO0.3; 1/=SO0.2; 1/

ƒ D 0 M3 ISO.2; 1/ ISO.2; 1/=SO0.2; 1/

ƒ < 0 AdS3 SO0.2; 1/ � SO0.2; 1/ SO0.2; 2/=SO0.2; 1/

Table 11.1. Model spacetimes for 3d gravity

solutions completely. There also exist weaker classification results for spacetimes
with point particles, which correspond to Lorentzian manifolds R � S , where S is
a surface with punctures or marked points [10, 11, 15]. However, a complete classifi-
cation is still missing in that situation.

Due to the classification result in Theorem 2.1, the moduli space MG;S
0 of vac-

uum solutions can be viewed as the physical or gauge invariant phase space of gravity
in three dimensions for a fixed topology of the spacetime and a fixed cosmological
constant. Each phase space point represents an isometry class of Lorentzian con-
stant curvature spacetimes and hence a universe with two space and one time dimen-
sion. A feature that is important for the quantisation of the theory is that the moduli
space MG;S

0 of vacuum solutions is a connected component of the moduli space
MG;S D Hom.�1.S/; G/=G of flatG-connections on S , for which the restriction to
regular representations is not imposed. This places the quantisation of 3d gravity in
the context of the quantisation of moduli spaces of flat connections.

The moduli space of flat G connections on S arises as the gauge invariant phase
space of Chern–Simons theory with gauge group G on the three-manifold R � S .
This description can be easily extended to the case where S is a surface with marked
points and, in this case, requires the assignment of a conjugacy class Ci 	 G to each
marked point pi . In the application to 3d gravity, these conjugacy classes correspond
to two-dimensional Cartan subalgebras of g and are chosen in such a way that they
involve only elliptic elements of the Lorentz group SO0.2; 1/ 	 G. The associated
moduli space then describes spacetimes with point particles for which curvature and
torsion become singular along one-dimensional submanifolds corresponding to their
worldlines. The associated moduli space of flat G-connections is given by

MG;S D HomC1;:::;Cn
.�1.S/; G/=G (11.2)

where the group homomorphisms h W �1.Sg;n/ ! G are required to map the loops
around the i th puncture to the associated conjugacy class Ci [8].

2.2 Symplectic structure Moduli spaces of flat connections have rich mathe-
matical properties. In particular, they carry a canonical symplectic structure [8, 29],
which for the relevant groups G from Table 11.1 induces a symplectic structure on
MG;S

0 	MG;S . The symplectic structure depends on the choice of an Ad-invariant
symmetric non-degenerate bilinear form h ; i on g D Lie.G/, which enters the defi-
nition of the Chern–Simons action.
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Figure 11.1. Generators of the fundamental group �1.S/ for a surface S of genus g with n marked
points.

Functions on the moduli space MG;S can then be identified with conjugation
invariant functions on HomC1;:::;Cn

.�1.S/; G/. In particular, every class function f
on G and every element � 2 �1.S/ gives rise to a function on MG;S that assigns
to a group homomorphism h W �1.S/ ! G the value f ı h.�/. These functions are
known as Wilson loop observables and play an important role in the description of
the symplectic structure on the moduli space. In particular, it was shown by Goldman
[29] that the Poisson bracket of two Wilson loop observables yields a function of
certain Wilson loop observables, which depends only on the chosen class functions
f on G and the intersection behaviour of the curves representing � 2 �1.S/.

A convenient parametrisation of this symplectic structure, which is adapted to
the description in terms of group homomorphisms and will be used in the following,
is due to Fock and Rosly [27] and Alekseev and Malkin [4]. It describes the sym-
plectic structure on the moduli space in terms of a (non-canonical) Poisson structure
on a larger ambient space. The key idea is to parametrise group homomorphisms
h W �1.S/! G in terms of the images of a set of generators of �1.S/.

The fundamental group �1.S/ of a surface S of genus g and with nmarked points
can be presented in terms of the a- and b-cycles aj ; bj of each handle and loops mi
around each puncture as

�1.S/ D hm1; : : :; mn; a1; b1; : : :; ag ; bg W Œbg ; a�1
g � � � � Œb1; a�1

1 �mn � � �m1 D 1i:
(11.3)

A set of representing curves is shown in Figure 11.1. If one characterises the
group homomorphisms h W �1.Sg;n/ ! G by the images of the generators, one can
therefore identify the moduli space MG;S with the set

MG;S D f.M1; : : :; Bg/ 2 GnC2g W
Mi 2 Ci ; ŒBg ; A�1

g � � � � ŒB1; A�1
1 � �Mn � � �M1 D 1g=G:

(11.4)

This allows one to describe the canonical symplectic structure on MG;S in terms
of a Poisson structure on GnC2g , where the different copies of G correspond to the
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group elements assigned to the generators of �1.S/ by a group homomorphism h W
�1.S/ ! G. The central ingredient in this description is a classical r-matrix for
the group G. This is an element r 2 g ˝ g that satisfies the classical Yang–Baxter
equation (CYBE)

ŒŒr; r�� D Œr12; r13�C Œr12; r23�C Œr13; r23� D 0:

If one denotes by Li˛ and Ri˛ the right- and left-invariant vector fields on the
different copies of G associated with a basis fT˛g of g

Li˛f .u1; : : :; unC2g/ D d

dt

ˇ̌̌
ˇ
tD0
f .u1; : : :; exp.�tT˛/ � ui ; : : :; unC2g/;

Ri˛f .u1; : : :; unC2g/ D d

dt

ˇ̌̌
ˇ
tD0
f .u1; : : :; ui � exp.tT˛/; : : :; unC2g/;

then one obtains a Poisson structure on GnC2g for which the classical r-matrix plays
the role of a structure constant.

Theorem 2.2. [27, 4] Let G be a Lie group, fT˛g˛D1;:::;m a basis of g and r DP
˛;ˇ r

˛ˇT˛ ˝ Tˇ 2 g ˝ g a solution of the CYBE with symmetric component r.s/
and antisymmetric component r.a/. Then the bivector

Bn;gr D 1
2
r
˛ˇ

.a/

 
nC2gX
iD1

�
Ri˛ C Li˛

�!˝
0
@nC2gX
jD1

�
R
j

ˇ
C Lj

ˇ

	1A

C 1
2
r
˛ˇ

.s/

gX
jD1

�
LnC2j
˛ ^LnC2j

ˇ
CLnC2j

˛ ^LnC2j�1
ˇ

CRnC2j
˛ ^LnC2j�1

ˇ

CRnC2j
˛ ^RnC2j�1

ˇ

	

C 1
2
r
˛ˇ

.s/

nX
iD1

Ri˛ ^Riˇ C 1
2
r
˛ˇ

.s/

X
1�i<j�nC2g

.Li˛ C Ri˛/ ^ .Ljˇ C Rjˇ /

(11.5)

defines a Poisson-structure f ; gr onGnC2g . If r.s/ is dual to the chosen Ad-invariant
symmetric bilinear form h ; i, this Poisson structure induces the canonical Poisson
structure on MG;S .

The symplectic structure on the moduli space MG;S is obtained from the one on
GnC2g by Poisson reduction [27, 4]. This induces in particular a symplectic structure
on MG;S

0 which for the appropriate groups G from Table 11.1 can be viewed as the
symplectic structure on the phase space of three-dimensional gravity.
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Figure 11.2. Foliation of a lightcone by hyperboloids.

2.3 Spacetime geometry and universal covers The relation between the
group homomorphisms in Theorems 2.1 and 2.2 and the geometry of the spacetimes
is given by the universal cover of the spacetimes. It is shown in [9, 12, 13] that under
the assumptions of Theorem 2.1 the universal cover of the spacetimes is a regular do-
mainD 	 X in the model spacetime from Table 11.1 which has an initial singularity
and which is bounded by lightlike hyperbolic planes. Forƒ < 0, the domain also has
a final singularity, in the other two cases, it is future-complete.

The domains are equipped with cosmological time functions T W D 7! .0;1/
[14], which give the geodesic distance of points in the spacetime from the initial
singularity and induce a foliation ofD by surfacesDT of constant cosmological time
T . The fundamental group �1.S/ acts on the domains via group homomorphisms
h W �1.S/ ! G in such a way that each surface of constant cosmological time is
preserved. The spacetime is obtained by taking the quotient of D with respect to
this group action. It therefore inherits a metric of signature .�1; 1; 1/ as well as
a cosmological time function and a foliation by surfaces of constant cosmological
time.

The simplest cases are the so-called conformally static spacetimes. In this case,
the universal cover is a lightcone in the model spacetime, i.e. the set of points in X
that can be reached from a given point by future directed timelike geodesics. The
cosmological time function gives the distance of a point p 2 D from the tip of the
lightcone, and all surfaces of constant cosmological time DT are (up to a confor-
mal scaling factor depending on T and the cosmological constant) copies of two-
dimensional hyperbolic space. The case ƒ D 0 is depicted in Figure 11.2. In this
case, one obtains a lightcone in three-dimensional Minkowski space and the standard
foliation of a lightcone by hyperboloids. This implies that – up to a global conju-
gation – each group homomorphism �1.S/ ! G which preserves the surfaces DT
must take values in the subgroup SO0.2; 1/ Š PSL.2;R/ 	 G, and the resulting
action of �1.S/ on DT coincides with the action of a Fuchsian group in PSL.2;R/
on the upper half-plane.
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Figure 11.3. The construction of a spacetime with particles by gluing the boundary of a domain
D 	M3.

Due to the restriction to regular representations, the quotient of each surface DT
by this action of �1.S/ defines a hyperbolic structure gS on S , and the metric of the
associated spacetimeM D D=�1.S/h takes the form

g D �dT 2 C sƒ.T /2gS sƒ.T / D

8̂<
:̂

sinT ƒ < 0

T ƒ D 0
sinh.T / ƒ > 0

;

where T denotes the cosmological time. As the geometry of the cosmological time
surfaces in M changes with the cosmological time only through a rescaling, such
spacetimes are called conformally static. For spacetimes that are not conformally
static, the domains D 	 X and the cosmological time surfaces take a more compli-
cated form, and the group homomorphisms h W �1.S/ ! G which determine the
action of �1.S/ on D no longer take values in the subgroup SO0.2; 1/ 	 G.

The case of spacetimes with point particles is more involved. On the one hand,
this is due to the lack of classification results and to the absence of the global hy-
perbolicity and of a cosmological time. On the other hand, this is related to the fact
that the group action of �1.S/ on the universal cover D 	 X involves elliptic ele-
ments of SO0.2; 1/. However, spacetimes with point particles can still be obtained
by gluing domains in the model spacetimes. The relevant gluing pattern is illustrated
in Figure 11.3. For a surface S of genus g and with n marked points corresponding
to point particle singularities, the relevant domain can be chosen in such a way that
it is foliated by 4g C 2n-gons as shown in Figure 11.3. The group homomorphism
h W �1.S/ ! G then describes the identification of the boundaries of the domain as
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shown in Figure 11.3 and stabilises the geodesics associated with the particles. As
the lines must correspond to worldlines of particles, they are required to be timelike
geodesics in the model spacetime, and the associated group elements Mi 2 G that
stabilise these timelike geodesics have elliptic Lorentzian components.

3 Three-dimensional gravity as a model
for quantum gravity

As illustrated in the previous sections, 3d gravity is a theory that follows the spirit of
Klein insofar as all of its physical and geometrical content is determined by certain
Lie groups and discrete subgroups thereof. On the one hand, these are the Lie groups
which define the model spacetimes, and the associated homogeneous spaces. One
the other hand, Klein’s philosophy of characterising geometry in terms of groups is
reflected in the group homomorphisms h W �1.S/ ! G that classify the spacetimes.
By Theorem 2.1, these group homomorphisms determine the geometry of vacuum
spacetimes completely and hence contain all geometrical and physical data of the
theory.

The fact that such a purely algebraic description of the solutions of Einstein’s
equations is possible in three dimensions is tied closely to the role of 3d gravity as
a toy model for quantum gravity in higher dimensions. As its phase space is given
by the finite-dimensional manifold MG;S

0 D Hom0.�1.S/; G/=G and there is an
explicit description of its symplectic structure, the quantisation of the theory is much
simpler than in four dimensions. 3d gravity thus offers the prospect of investigating
conceptual questions of quantum gravity in a fully quantised theory.

On the one hand, these are questions about the role of time and space in a quan-
tum theory of gravity and an appropriate notion of observers, which are a fundamen-
tal concept in general relativity and must be included appropriately in the quantum
theory. Another set of questions concerns the relation between measurements and
observables in 3d gravity. While the physical observables of the theory are by defi-
nition diffeomorphism invariant quantities, most realistic measurements made by an
observer would depend on a notion of time such as the eigentime of the observer or
a cosmological time. This indicates that the relation between observables and mea-
surements is less direct than in other quantum theories, where the former describe the
latter. Rather, it is argued in [45] that observables in quantum gravity relate different
quantities measured by observers. Further issues of this type are questions about the
different notions of time in the theory, questions about non-commutative aspects of
spacetime geometry and questions about the spectra of of geometrical operators; for
an overview, see [20].

These issues are also directly apparent in three-dimensional gravity. As shown
in the previous section, the diffeomorphism invariant observables of 3d gravity can
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be identified with conjugation invariant functions on the space Hom0.�1.S/; G/ of
regular representations of the fundamental group. By Theorem 2.1, these regular
representations determine the geometry of vacuum spacetimes completely and hence
encode the entire geometrical and physical content of the theory. This implies in
particular that the outcome of all physical measurements made by observers in such
a spacetime should be given in terms of these group homomorphisms.

Another important question related to the quantisation of (3d) gravity is the ques-
tion about the symmetries of the quantum theory. While it is conjectured from phe-
nomenological considerations that quantum groups would play an important role as
symmetries of quantum gravity, it is currently not possible to confirm or refute this
argument for the four-dimensional theory. In contrast, the relation between quantum
group symmetries and the quantisation of gravity is more direct in three dimensions.

Many established quantisation formalisms for moduli spaces of flatG-connections
such as combinatorial quantisation [2, 3, 6, 18, 17, 42, 39, 38] or the Reshetikhin–
Turaev invariants [44] which arise in the quantisation of Chern–Simons theory are
constructed via the representation theory of certain quantum groups associated with
G. Moreover, the appearance of such quantum group symmetries in the quantisation
of the theory is natural, since the description of the symplectic structure on the moduli
space of flat connections in Theorem 2.2 involves a classical r-matrix.

Classical r-matrices play an important role in the description of Poisson–Lie
groups and can be viewed as the classical counterpart of the quantum R-matrix in
a quantum group. The appearance of classical r-matrices in the description of the
symplectic structure on moduli spaces of flat connections thus suggests that quantum
groups should arise in its quantisation. However, since these Poisson–Lie symme-
tries act on a larger ambient space from which the moduli space of flat connections
is obtained via Poisson reduction, it remains unclear to what degree they survive the
reduction process. Consequently, it is not readily apparent whether the associated
quantum group symmetries have a physical interpretation or whether they merely
serve as technical tools for the construction of the quantum theory. Although there is
much discussion of this question on a phenomenological level, this question cannot
be given a final answer unless one explicitly performs this Poisson reduction to the
phase space of 3d gravity and investigates the mathematical structures arising from it.

These two sets of questions are examples of fundamental questions of quantum
gravity that can be addressed in 3d gravity and that are intimately tied to the algebraic
nature of the theory, namely its characterisation in terms of group homomorphisms.
While they are of high relevance for the quantisation of 3d gravity, they are already
present in the classical theory and useful conclusions can be drawn by investigat-
ing them in the classical framework. In the following sections, we illustrate this
with two examples. The first is the relation between the group theoretical data that
parametrises the phase space of 3d gravity and the outcome of concrete measurements
made by observers in Section 4. The second is the physical interpretation of quantum
group symmetries and their classical counterparts, Poisson–Lie symmetries, and the
associated mathematical structures in Section 5.
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4 Measurements from algebraic data

In this section, we show how the group-theoretical data that characterises the space-
times by Theorem 2.1 is related to concrete and realistic measurements made by
observers and how it encodes the general relativistic content of the theory. For this,
we focus on maximally globally hyperbolic vacuum spacetimes of genus g � 2 for
vanishing cosmological constant, although similar considerations are possible for all
values of ƒ.

We consider an observer in free fall in a spacetime who attempts to determine
its geometry by sending and receiving lightray. In the absence of matter, the only
quantities that could be measured by such an observer is the geometry of the universe
itself. The key idea to obtain physically meaningful measurements is to note that
the geometry of the surfaces of constant cosmological time manifests itself in the
presence of returning lightrays – light signals that are sent by the observer and return
to him at a later time. The observer can then measure several quantities associated
with such returning lightrays. For instance, he can determine their return time, i.e.
the time elapsed between the emission and return of a light signal, the direction from
which the light returns or in which it needs to be sent to return and the frequency shift
of the returning lightray.

To derive explicit expressions for the measurements associated with returning
lightrays it is advantageous to work in the universal cover. We consider a flat maxi-
mally globally hyperbolic 3d Lorentzian manifoldM with a compact Cauchy surface
S of genus g � 2 together with the regular domain D 	 M3 and group homomor-
phism h W �1.S/! ISO.2; 1/ as in Theorem 2.1. We start with a precise formulation
of the relevant physics concepts.

Definition 4.1 ([36]).
1. An observer in M is determined by a timelike, future-directed geodesic g W
Œa;1/ ! M , his worldline or, equivalently, by a �1.S/-equivalence class of
timelike, future-directed geodesics Qg W Œa;1/ ! D in the universal cover.
The worldline g W Œa;1/! M is called parametrised according to eigentime
if Pg.t/2 D �1 8t 2 Œa;1/.

2. A lightray in M is a lightlike future-directed geodesic c W Œp;1/ ! M or,
equivalently, a �1.S/-equivalence class of lightlike future-directed geodesics
in D.

3. A lightray emitted (received) by an observer with worldline g W Œa;1/ ! M
at eigentime t is a lightlike future-directed geodesic c W Œp; q� ! M with
c.p/ D g.t/ .c.q/ D g.t// or, equivalently, the �1.S/-equivalence class of
lightlike future-directed geodesics Qc W Œp; q� ! D for which there exists a lift
Qg W Œa;1/! QM of g such that Qc.p/ D Qg.t/ . Qc.q/ D Qg.t//.

Note that any future directed timelike geodesic in the universal coverD 	 M
3 can

be parametrised in terms of an element x 2 H2, the velocity vector of the observer,
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Figure 11.4. Lifts of the observer’s worldline toD with returning lightray (dashed line), orthogonal
complement x? D PQg.t/? and its image (grey planes) and projection of the returning lightray to
x? D PQg.t/? and its image (dashed arrows).

and a vector x0 2 D, the observer’s initial position as

Qg.t/ D tx C x0: (11.6)

The parameter t gives the time as perceived by the observer, i.e. the time that
would be shown by a clock carried by the observer. Similarly, each lightlike future-
directed geodesic Qc W Œ0;1/! D is given by a vector y in the future lightcone and
an initial position vector y0 2 D

Qc.s/ D sy C y0: (11.7)

It is directly apparent that Definition 4.1 also captures the phenomenon of return-
ing lightrays, lightrays that are emitted by an observer and return to him at a later
time. Such a returning lightray corresponds to a lightlike future-directed geodesic
c W Œp; q� ! M that intersects g in c.p/ and c.q/. Equivalently, a returning lightray
can be described as a �1.S/-equivalence class of lightlike future-directed geodesics
Qc W Œp; q� ! D for which there is an element � 2 �1.S/ and a lift Qg W Œa;1/ ! D
of g with Qc.p/ 2 Qg , Qc.q/ 2 h.�/ Qg.

This description of returning lightrays in the universal cover D is shown in Fig-
ure 11.4. As a returning lightray relates a lift of the observer’s worldline to one of
its images under the action of �1.S/, it defines a unique element � 2 �1.S/. How-
ever, it is a priori not guaranteed that for each observer and each element of �1.S/
there exists a returning lightray. This is a consequence of the geometrical properties
of Minkowski space and the future-completeness of the domains D and follows by
a direct computation.
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Lemma 4.1 ([36]). Let g W Œa;1/ ! M be the worldline of an observer. Then
for all t 2 Œa;1/ the returning lightrays c W Œp; q� ! M with c.p/ D g.t/ are in
one-to-one correspondence with elements of the fundamental group �1.S/.

The formulation of the relevant physics concepts in terms of the universal cover
D 	 M

3 allows one to explicitly compute the measurements associated with return-
ing lightrays in terms of the group homomorphisms h W �1.S/ ! ISO.2; 1/. We
start with the return time, the interval of eigentime elapsed between the emission of
a returning lightrays and its return as measured by the observer.

Definition 4.2 ([36]). Let Qg W Œa;1/! D a lift of an observer’s worldline parametrised
as in (11.6). Then for each te 2 Œa;1/, � 2 �1.S/, there exists a unique tr 2
.te;1/ and a unique lightlike geodesic Qc� W Œ0; 1� ! D with Qc�.0/ D Qg.te/ and
Qc�.1/ D h.�/ Qg.tr/. The return time �t D tr � te is the unique positive solution of
the quadratic equation

.h.�/ Qg.te C�t/� Qg.te//2 D 0: (11.8)

To obtain the directions in which the light needs to be emitted in order to return
to the observer, we recall that the directions an observer perceives as “spatial” are
given by the orthogonal complement x? D PQg.t/?, where Qg W Œa;1/! D is the lift
observer’s worldline parametrised as in (11.6). To determine the relative frequencies
of a returning lightray at its emission and return, one works in the universal cover
and performs a computation similar to the relativistic Doppler effect. This yields the
following definition.

Definition 4.3 ([36]). Let Qg W Œa;1/ ! D be a lift of an observer’s worldline as in
(11.6) and Qc W Œp; q� ! D a lightlike geodesic associated with a returning lightray
that satisfies Qc.p/ D Qg.te/, Qc.q/ D h.�/ Qg.tr/ for an element � 2 �1.S/.

1. The direction into which the lightray associated with Qc is emitted as perceived
by the observer is given by the spacelike unit vector

Ope D …x?. PQc.p//=j…x?. PQc.p//j (11.9)

where…x? WM3 ! x? denotes the projection on the orthogonal complement
x?.

2. The quotient of frequencies of the lightray at its emission and return as mea-
sured by the observer is given by

fr

fe
D h.�/x � .h.�/ Qg.tr/ � Qg.te//

x � .h.�/ Qg.tr/ � Qg.te// : (11.10)

To obtain explicit results for the return time, the directions of emission and the
frequency shift, it is advantageous to introduce additional parameters, which are given
as functions of the velocity vector x, the initial position x0 and the group elements
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h.�/ D .v�; a�/ 2 ISO.2; 1/ with v� 2 SO.2; 1/0, a� 2 R3. For any element
� 2 �1.S/ and any geodesic Qg parametrised as in (11.6), we define

cosh �� D �x � v�x

h.�/ Qg.0/� Qg.0/ D ��.v�x � x/C ��v�x C ��x ^ v�x:
(11.11)

The parameter ��, which depends only on the velocity vector x and the Lorentzian
component of h.�/ has a direct interpretation as the geodesic distance of x and its im-
age in hyperbolic space H2. The parameters ��; ��; �� characterise the relative initial
position of the geodesic Qg and its image h.�/ Qg. They depend on the velocity vector x,
the initial position x0 as well as the group homomorphism h W �1.S/ ! ISO.2; 1/.
Using Definitions 4.2, 4.3, one can derive explicit expressions for the measurements
associated with returning lightrays in terms of the parameters ��; ��; ��; ��, which
are summarised in the following theorem.

Theorem 4.4 ([36]). Let Qg W Œa;1/! QM be a lift of the worldline parametrised as
in (11.6). Consider a returning lightray associated with an element � 2 �1.S/ that
is emitted by the observer at eigentime t and returns at t C �t . Then the eigentime
�t elapsed between the emission and return of the lightray is given by

�t.t;x;x0; h.�// D .t C ��/.cosh���1/���Csinh ��
q
.tC��/2C�2�; (11.12)

where ��; ��; ��; �� are functions of x;x0 and h.�/ defined by (11.11). The direction
into which the lightray is emitted is given by the spacelike unit vector

Ope� D cos�e
v�x C .x � v�x/x

jv�x C .x � v�x/xj C sin�e
x ^ v�x

jx ^ v�xj
with tan�e.t;x;x0; h.�// D ��

sinh��
q
.t C ��/2 C �2�

:
(11.13)

The relative frequencies of the lightray at its emission and return are given by

fr=fe.t;x;x0; h.�// D
q
.t C ��/2 C �2�

cosh��
q
.t C ��/2 C �2� C sinh ��.t C ��/

< 1:

(11.14)

The description of a flat maximally globally hyperbolic three-dimensional space-
time with a compact Cauchy surface S of genus g � 2 by a group homomorphism
h W �1.S/ ! ISO.2; 1/ thus allows one to directly determine the outcome of mea-
surements by an observer as a function of the group homomorphism h. In particular,
it is shown in [37] that such measurements are sufficient to determine the group ho-
momorphism h W �1.S/ ! ISO.2; 1/ associated with a vacuum spacetime up to
conjugation in finite eigentime.
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5 Gauge fixing and observers in quantum gravity

5.1 Three-dimensional gravity as a constrained system In this section,
we explain how three-dimensional gravity can be viewed as a constrained system in
the sense of Dirac [24, 25] and investigate the mathematical structures with gauge
fixing. In the following, we restrict our attention to the case of vanishing cosmolog-
ical constant and spacetimes R � S , where S is a surface of genus g with n � 2
marked points. We consider the description of the associated moduli space MG;S

with G D ISO.2; 1/ in terms of group homomorphisms h W �1.S/ ! ISO.2; 1/ and
the associated description of the symplectic structure from Theorem 2.2 in terms of
a Poisson structure on ISO.2; 1/nC2g . According to (11.4), the moduli space of flat
ISO.2; 1/-connections on S is then given by

MISO.2;1/;S D HomC1;:::;Cn
.�1.S/; ISO.2; 1//=ISO.2; 1/

D f.M1; : : :; Bg/ 2 ISO.2; 1/nC2g W
Mi 2 Ci ; ŒBg ; A�1

g � � � � ŒB1; A�1
1 � �Mn � � �M1 D 1g=ISO.2; 1/:

The moduli space is thus obtained from ISO.2; 1/nC2g by restricting the group
elements Mi for the loops around punctures to fixed conjugacy classes, by imposing
the relation

C D ŒBg ; A�1
g � � � � ŒB1; A�1

1 � �Mn � � �M1 D 1; (11.15)

which arises from the defining relation of the fundamental group �1.S/, and by
identifying points which are related by global conjugation.

In the application to 3d gravity, this has a direct interpretation in terms of space-
time geometry. Equation (11.15) ensures that the construction of the spacetimeM by
gluing the boundary of a domain D 	 M

3 yields a spacetime of topology R � Sg;n,
i.e. that the black dots in Figure 11.3 are identified to a single point. The restriction
of the group elements Mi to fixed conjugacy classes Ci 	 ISO.2; 1/ is related to
the interpretation of the punctures as point particles in 3d gravity. If one considers
conjugacy classes which contain only elliptic elements of SO0.2; 1/ Š PSL.2;R/,
the geodesics in M

3 that are stabilised by the group elements Mi are timelike and
hence can be viewed as worldlines of massive particles. The two parameters which
characterise the conjugacy classes Ci are then an angle i 2 Œ0; 2�/, which describes
the mass of the point particle and a translation parameter si 2 R, which arises from
the particle’s internal angular momentum or spin [21, 22, 23].

Group homomorphisms h W �1.Sg;n/! ISO.2; 1/ that are related by conjugation
with a fixed element of ISO.2; 1/ correspond to a Poincaré transformation applied to
the domainD 	M3. As this is an isometry of M3, the resulting quotient spacetimes
with the induced metric are isometric. Such Poincaré transformations thus play the
role of gauge transformations that relate equivalent descriptions of the same space-
time.

This ambiguity in the description of the spacetimes is linked to the fact that the
Poisson structure in Theorem 2.2 is a constrained mechanical system in the sense
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of Dirac [24, 25], and the relation (11.15) can be considered as a set of first-class
constraints. If one considers for f 2 C1.ISO.2; 1// the associated functions

fC W ISO.2; 1/nC2g ! R; fC .M1; : : :; Bg/ D f .C /;
where C is given by (11.15), then it follows from (11.5) that for any
f; g 2 C1.ISO.2; 1//, the Poisson bracket ffC ; gC g vanishes on the constraint sur-
face

†Df.M1; : : :; Bg/2 ISO.2; 1/nC2gW ŒBg ; A�1
g �� � �ŒB1; A�1

1 ��Mn� � �M1D1g;
(11.16)

and the diagonal action of ISO.2; 1/ on ISO.2; 1/nC2g is generated by the func-
tions fC

ffC ; gg D d

dt

ˇ̌̌
ˇ
tD0

g ı �tf 8g 2 C1.ISO.2; 1/nC2g/; where

�tf .M1; : : : ; Bg/ D .exp.txf / �M1 � exp.�txf /; : : : ; exp.txf / � Bg � exp.�txf //
with xf 2 iso.2; 1/ determined by f . By choosing an appropriate set of functions
f1; : : :; f6 2 C1.ISO.2; 1// such that † D f �1

1;C .0/ \ : : : \ f �1
6;C .0/, one can thus

interpret the relation (11.15) as a set of six first-class constraints which generate gauge
transformations by simultaneous conjugation.

In contrast, the restriction of the group elementsMi to fixed conjugacy classes Ci
does not correspond to any gauge freedom. One can show that for any class function
g 2 C1.ISO.2; 1//, the functions gi W ISO.2; 1/nC2g ! R, gi.M1; : : :; Bg/ D
g.Mi/ are Casimir functions of the Poisson structure (11.5).

5.2 Gauge fixing and dynamical r-matrices In the context of three-dimen-
sional gravity, the gauge freedom in the description of the moduli space of flat con-
nections is directly related to the implementation of an observer into the theory [40].
As explained in the previous section, an observer in free fall corresponds to a �1.S/-
equivalence class of timelike geodesics in the domain D 	 M

3, and any two ob-
servers are related by a Poincaré transformation. One can thus interpret the conjuga-
tion of a group homomorphism h W �1.S/ ! ISO.2; 1/ by an element of ISO.2; 1/
as the transition between two observers.

To eliminate this gauge freedom and to select an observer, one must characterise
an observer with respect to the geometry of the spacetime. The most direct way of
doing so is to relate his reference frame to the motion of the point particles in M .
For instance, one can impose that one of the point particles in the spacetime is at
rest at the origin and another one moves in a fixed direction in such a way that its
distance from the first particle is minimal at a fixed time. If the lifts of the worldlines
of the two chosen particles to D are not parallel, this eliminates the gauge freedom
by Poincaré transformations.

In the following, we impose such gauge fixing conditions based on two point par-
ticles and analyse the resulting Poisson structures. For this we employ Dirac’s gauge
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fixing procedure [24, 25]. In mathematical terms, this procedure amounts to selecting
a representative in each ISO.2; 1/-orbit on † and describing the symplectic structure
on MISO.2;1/;S in terms of a Poisson structure on the space of representatives. This
approach can be viewed as the Poisson counterpart of symplectic reduction and is
summarised as follows.

Definition 5.1 ([24, 25]). Let .M; f ; g/ be a Poisson manifold.
1. A set of first class constraints for .M; f ; g/ is a function ˆ D .�1; : : :; �k/ W
M ! R

k such that 0 is a regular value of ˆ and f�i ; �j gjˆ�1.0/ D 0.

2. A gauge fixing condition for a set of first class constraints ˆ is a function
‰ D . 1; : : :;  k/ WM ! R

k such that

� 0 is a regular value of C D .�1; : : :; �k;  1; : : :;  k/ WM ! R2k .

� The matrix .f�i ;  j g/i;jD1;:::;k W M ! Mat.k;R/ is invertible every-
where on C�1.0/.
� Every point on ˆ�1.0/ can be mapped to one point on C�1.0/ via the

flows generated by the constraint functions �i .

Theorem 5.2 ([24, 25]). Let .M; f ; g/ a Poisson manifold,ˆ WM ! R
k a set of first

class constraints and ‰ WM ! Rk a gauge fixing condition. Then the matrix valued
function D D .fCi ; Cj g/i;jD1;:::;2k WM ! Mat.2k;R/ is invertible on C�1.0/ and

ff; ggD D f Qf ; QggjC�1.0/ C
2kX

i;jD1
f Qf ; CigjC�1.0/.Dj�1C�1.0/

/ij f Qg; Cj gjC�1.0/

(11.17)
for f; g 2 C1.C�1.0// and arbitrary extensions Qf ; Qg 2 C1.M/ defines a Poisson
structure on C�1.0/.

We now apply Dirac’s gauge fixing formalism to the description of the moduli
space of flat ISO.2; 1/-connections. In this case, we have M D ISO.2; 1/nC2g
with the Poisson structure from Theorem 2.2. The choice of classical r-matrix for
ISO.2; 1/ is non-unique. For computational reasons, it is advantageous to work with
the classical r-matrix that realises ISO.2; 1/ as the classical double of SO.2; 1/ with
the trivial cocommutator. If one chooses a basis fJa; PagaD0;1;2 of iso.2; 1/, in which
the Lie bracket takes the form

ŒJ0; J1� D J2 ŒJ0; J2� D �J1 ŒJ1; J2� D �J0
ŒJ0; P0� D 0 ŒJ0; P1� D P2 ŒJ0; P2� D �P1
ŒJ1; P0� D �P2 ŒJ1; P1� D 0 ŒJ1; P2� D �P0
ŒJ2; P0� D �P1 ŒJ2; P1� D P0 ŒJ2; P2� D 0
ŒP0; P1� D 0 ŒP0; P2� D 0 ŒP1; P2� D 0;

this classical r-matrix is given by r D �P0 ˝ J0 C P1 ˝ J1 C P2 ˝ J2. The
constraints correspond to the ISO.2; 1/-valued constraint (11.15) and the associated
gauge transformations are given by the ISO.2; 1/-action on ISO.2; 1/nC2g .
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Figure 11.5. Gauge fixing condition for point particles

We now impose a set of six gauge fixing conditions that eliminates this gauge
freedom by restricting the group elements for two point particles. As different or-
derings of the particles correspond to a braid group action on ISO.2; 1/nC2g which
is a Poisson isomorphism with respect to the Poisson structure from Theorem 2.2,
one can restrict attention to gauge fixing conditions which restrict only the group
elements M1;M2. Moreover, the constraints and gauge fixing conditions should re-
spect the natural N-grading of the Poisson-structure that corresponds to a physical
dimension of „. This leads one to consider that a set of constraints and gauge fixing
conditions consists of six functions that depend only on the Lorentzian components
of the group elements M1;M2 2 ISO.2; 1/ and six functions that depend linearly on
their translational components.

Subject to these restrictions, the group elements M1;M2 2 ISO.2; 1/ are deter-
mined uniquely by two Poincaré invariant quantities, the angle  between the asso-
ciated geodesics in Minkowski space, which is related to their relative velocity, and
their minimal distance ˛ as shown in Figure 11.5. With the formula in Theorem 5.2,
one can then compute the Dirac bracket for the associated constraints and gauge fix-
ing conditions. If one parametrises the surface C�1.0/ in term of these parameters
 and ˛ and the residual, non-gauge fixed group elements M3; : : :; Bg 2 ISO.2; 1/,
this determines a Poisson structure on R2� ISO.2; 1/nC2g�2, for which the condition
(11.15) acts as a Casimir function.

Theorem 5.3 ([41]). For every set of constraints and gauge fixing conditions as
above, the Dirac bracket (11.17) determines a Poisson structure f ; gr;x on R

2 �
ISO.2; 1/nC2g�2 with

f ; ˛gr;x D 0; f ; f gr;x D d

dt

ˇ̌̌
ˇ
tD0
f ı �t ;

f˛; f gr;x D d

dt

ˇ̌̌
ˇ
tD0
f ı �t˛; ff; ggr;x D ff; ggr
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for f; g 2 C1.ISO.2; 1/nC2g�2/ and

�t .M3; : : : ; Bg/ D .exp.t x / �M3 � exp.�tx /; : : : ; exp.t x / � Bg � exp.�t x //

�t˛.M3; : : : ; Bg/ D .exp.t x˛/ �M3 � exp.�tx˛/; : : : ; exp.t x˛/ � Bg � exp.�t x˛//

with x W R2 ! R
3 	 iso.2; 1/, x˛ W R2 ! iso.2; 1/, and where f ; gr is the

Poisson bracket (11.5) on ISO.2; 1/nC2g�2 for r W R2 ! iso.2; 1/˝iso.2; 1/. For all
. ; ˛/ 2 R2 x . ; ˛/, x˛. ; ˛/ span an abelian Lie subalgebra h. ; ˛/ 	 iso.2; 1/,
and r is a solution of the classical dynamical Yang–Baxter equation (DCYBE)

ŒŒr; r�� D x.1/ 
@r23

@ 
� x.2/ 

@r13

@ 
C x.3/ 

@r12

@ 
C x.1/˛

@r23

@˛
� x.2/˛

@r13

@˛
C x.3/˛

@r12

@˛
:

The gauge fixed Poisson structure from Theorem 5.3 is thus obtained from the
Poisson structure (11.5) on ISO.2; 1/nC2g by removing the first two arguments and
replacing the classical r-matrix by a solution r W R2 ! iso.2; 1/˝ iso.2; 1/ of the
dynamical classical Yang–Baxter equation (DCYBE). The two dynamical parameters
are related to the relative velocity and the minimal distance of the two gauge fixed
point particles.

It remains to clarify how the concrete choice of gauge fixing conditions manifests
itself in this description. For this, note that for different gauge fixing conditions based
on two point particles, the associated group elements M1;M2 are always related by
a Poincaré transformation which depends on the variables  and ˛. The transition
between different gauge fixing conditions is therefore given by transformations of the
form

P W . ; ˛;M3; : : :; Bg/ 7! . ; ˛; p. ;˛/M3p. ;˛/
�1; : : :; p. ;˛/Bgp. ;˛/�1/

(11.18)
with p 2 C1.R2; ISO.2; 1//. One can show that such dynamical Poincaré transfor-
mations induce transformations of the associated dynamical r-matrices.

Theorem 5.4 ([41]). Under a dynamical Poincaré transformation (11.18) the Poisson
bracket from Theorem 5.3 transforms according to

ff ı P; g ı P gr;x D ff; ggrp ;xp ı P;
where xp˛ D Ad.p/x˛; xp D Ad.p/x ;

(11.19)

rp D .Ad.p/˝ Ad.p//.r C N� � N�21/
with

N� D x ˝ p�1@ p C x˛ ˝ p�1@˛p:

The transformations (11.19) generalise the gauge transformations of dynamical
r-matrices in [26] for a fixed abelian subalgebra h. As the latter are used in the
classification of dynamical r-matrices, it seems plausible that by applying such trans-
formations together with a rescaling  ! f . /, ˛ ! g. /˛ C h. /, it should be
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possible to classify all gauge fixed Poisson structures in Theorem 5.3. This is indeed
possible locally, for those values of the parameters  ; ˛ for which h. ; ˛/ does not
contain parabolic elements of so.2; 1/ 	 iso.2; 1/.

Theorem 5.5 ([41]). Let . 0; ˛0/ be a point for which h. 0; ˛0/ does not con-
tain parabolic elements of so.2; 1/ 	 iso.2; 1/. Then there exists a neighbourhood
U 	 R

2 of . 0; ˛0/ in which by a transformation (11.18) and a rescaling of the
parameters  ; ˛, the dynamical r-matrix and the functions x ; x˛ W R2 ! iso.2; 1/
from Theorem 5.3 can be brought into the form: x ; x˛ W U ! SpanfP0; J0g and

r. ; ˛/ D r.s/ C 1
2

tan. 
2
/.P1 ^ J2 � P2 ^ J1/C ˛

4 cos2. 
2
/
P1 ^ P2

or x ; x˛ W U ! SpanfP1; J1g and

r. ; ˛/ D r.s/ C 1
2

tanh. 
2
/.P2 ^ J0 � P0 ^ J2/C ˛

4 cosh2. 
2
/
P2 ^ P0:

with

r.s/ D 1
2
.�P0 ˝ J 0 � J 0 ˝ P0 C P1 ˝ J 1 C J 1 ˝ P1 C P2 ˝ J 2 C J 2 ˝ P2/:

It is shown in [41] that these two solutions have a direct physical interpretation.
The first corresponds to the centre of mass frame of an asymptotically conical uni-
verse, in which the centre of mass of the spacetime behaves like a particle which is
at rest at the origin with respect to the observer. The second solution corresponds to
a spacetime that asymptotically has the geometry of a torus universe. The two dy-
namical parameters  and ˛ correspond, respectively, to the total energy and total
angular momentum of the spacetime as measured by the observer.

This investigation of the classical Poisson–Lie symmetries on the gauge invariant
phase space of 3d gravity allows one to draw conclusions about the quantum group
symmetries arising in its quantisation. The preceding discussion shows that the ques-
tion about the quantum group symmetries in 3d gravity is subtle. Specifically, the
relevant quantum groups and Poisson–Lie groups change depending on whether one
considers the quantisation of a larger ambient space or the gauge invariant phase space
obtained via a gauge fixing procedure. On the former, the relevant quantum groups
are the ones that arise from solutions of the CYBE whose symmetric component is
dual to the Ad-invariant bilinear form in the Chern–Simons action. On the latter, the
relevant Poisson–Lie and quantum group symmetries are dynamical ones determined
by the classical r-matrix in Theorem 5.3.

As gauge fixing amounts to selecting an observer whose motion is specified with
respect to two point particles in the spacetime, the dynamical quantum group sym-
metries can be viewed as structures associated with the inclusion of an observer in
the quantum theory. This interpretation is in agreement with the fact that the two dy-
namical parameters have the interpretation of energy and angular momentum, whose
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definition requires the specification of a reference frame. Such a link between dynam-
ical r-matrices and observers in 3d gravity was obtained by very different methods in
[16, 19], which is strong evidence that dynamical quantum group symmetries should
be considered as the correct physical symmetries for 3d gravity.
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1 Introduction

Let us be honest: most physicists of our time, even theorists, do not have a very
clear notion of what Klein’s Erlanger Programm is about, and this is an understate-
ment. . . If we read Weyl [32], however,

According to Klein’s Erlanger Program any geometry of a point-field is based on
a particular transformation group G of the field; figures which are equivalent with
respect to G, and which can therefore be carried into one another by a transformation
of G, are to be considered as the same. . .

and substitute “physical systems” for “figures”, we see that modern physicists, like
Molière’s character Monsieur Jourdain, who was delighted to learn that he had been
speaking prose all his life without knowing, would love to hear that they keep follow-
ing Klein’s program . . .

The aim of this chapter is indeed to illustrate how group theory associated with
invariances of the geometry or the dynamics of a physical system has pervaded all
modern physics and has become of everyday use in the physicist’s toolbox. A word
of caution, though. As the author of these lines is not a professional historian of
science, this chapter will undoubtedly present only a biased and incomplete view of
this vast subject.
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2 Early group theory in 19th century physics:
crystallography

Before the birth of Lie group theory and Klein’s Erlangen program, physicists had
realized the role of symmetry in Nature and foreseen the importance of group theory
in the physical sciences. It had been known for long by artists that 2-dimensional
periodic patterns – tilings or wall paper motives, i.e. two-dimensional “crystals” –
were coming in finite types. There are 17 types of symmetry – 17 space groups in
modern terminology – in two dimensions. For a beautiful illustration, see the web
site http://en.wikipedia.org/wiki/Wallpaper group. Crystallographers then set out to
tabulate the corresponding structures in 3 dimensions, classifying in turn the point
groups, i.e. groups that fix a point of a lattice, the classes of lattices, and the space
groups, taking translations into account. This long endeavor kept them busy for the
major part of the nineteenth century, with important steps achieved by Frankenheim
and by Hessel (32 point groups in 3 dimensions, in the 1830’s), by Bravais (14 classes
of lattices, circa 1850), Jordan (who emphasized the role of groups), and many others.
The program was completed in the early nineties of that century, by Schönflies,1

Fedorov and Barlow (1891–94), with the classification of the 230 space groups in 3
dimensions, see [2, 22, 11, 17]. The situation is summarized in the following table

Dimension d Point Groups Lattices Space groups
d D 1 2 1 2
d D 2 10 5 17
d D 3 32 14 230

According to H. Weyl [32] “The most important application of group theory to
natural science heretofore has been in this field.” It is interesting to notice that Weyl
wrote this comment in 1928, many years after the birth of relativity – both special
and general –, and as he was himself working on the applications of group theory to
quantum physics.

Breaking of symmetry If it is important in physical sciences to know the possible
types of symmetry, it is maybe even more interesting to understand the way these
symmetries may be broken.2 This was emphasized in a particularly clear way by
Pierre Curie, as stated in his principle (1894) [3]: “Elements of symmetry of causes
must be found in effects; when some effects reveal some asymmetry, that asymmetry
must be found in causes.” Or in a more cursive way: “C’est la dissymétrie qui crée le
phénomène.”

An example is provided by the phenomenon of piezoelectricity, i.e. the creation of
an electric (vector) fieldE in a crystalline material subject to a mechanical stress. The
latter is described by a rank-two tensor u; in a linear approximation the electric field

1It may be relevant to observe that Schönflies was directed to this problem by Klein, who saw it as a nice
illustration of his program.

2This is also an interesting issue in art, see [34].

http://en.wikipedia.org/wiki/Wallpaper_group
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is proportional to u, Ei DPjk �i;jkujk , and hence the phenomenon depends on the
existence of a non-vanishing rank 3 tensor �i;jk ¤ 0; if the crystal admits a symmetry
by “inversion”, (i.e. reflection with respect to a point), �i;jk is changed into ��i;jk
under inversion and must vanish, and this rules out piezoelectricity in many crystal
classes. Only non-symmetric crystalline classes may give rise to piezoelectricity.

Curie also understood that the breaking of a symmetry under a group G may
leave invariance under a subgroup (an “intergroupe” in his terms) H of G, an idea
still quite topical. For instance, he classified the possible breaking and subgroups of
a system invariant under rotations around an axis, i.e. under the groupD1 in modern
terminology.

Limits of group theory As noticed by M. Senechal [24], “group theory cannot
answer a question that seems fundamental today: which shapes tile space and in what
way?”. That question has of course become highly relevant since the discovery some
30 years ago of quasicrystals. In this new class of materials, rotational order does
not extend to large distances and translation invariance is lost. Still diffraction of
X-rays leads to patterns of bright spots exhibiting some symmetry. This has led the
International Union of Crystallography to redefine the term “crystal” so as to include
both ordinary periodic crystals and quasicrystals. According to this new definition,
a crystal is “any solid having an essentially discrete diffraction diagram”.

3 Special relativity and Lorentz group:
Lorentz, Poincaré, Einstein . . .

Special relativity is often regarded as the first appearance of Lie group theory in
modern physics. Let us recall some of the crucial steps, referring the reader to more
scholarly sources [19, 4] for further details.
� Lorentz (1892–1904) (after Voigt and FitzGerald, and in parallel to Larmor)

discovers what are now called the Lorentz transformations and the resulting
contraction of lengths. His purpose is to make the Michelson–Morley experi-
ment consistent with the existence of aether.
� Poincaré (1905) establishes the covariance of Maxwell equations under Lorentz

transformations; he also sees that Lorentz transformations together with space
rotations leave the form x � x WD x2 C y2 C z2 � c2t2 invariant and form
a group, thus giving them their proper geometric meaning, much in the spirit
of Klein. In his approach, however, the Lorentz group is not derived from first
principles.
� Einstein (1905) starting from two principles – (i) the principle of relativity:

physical laws do not depend on the inertial frame of the observer; and (ii) in
an inertial frame the speed of light c is an absolute constant of Physics, inde-
pendent of the uniform motion of the source – constructs the Lorentz transfor-
mations; he notices as a side remark that Lorentz special transformations (or
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“boosts” as we call them now) of collinear velocities form a group, “wie dies
sein muss” (as they should);3 he proves that they leave Maxwell’s equations
invariant, but does not seem to notice or at least does not comment on the fact
that they also preserve the form x � x.

� Minkowski (1908) introduces “space-time”, identifies the Lorentz group as the
invariance group of the metric x21 C x22 C x23 C x24 with x4 D ict , makes
use of the notion of 4-vectors and tensors, and shows the covariant way of
writing Maxwell equations. At first Einstein is not impressed by this piece
of work, qualifying it as “überflüssige Gelehrsamkeit” (superfluous erudition)!
[6]. After starting to work on gravitation, however, Einstein soon realizes the
power of tensor methods.

Thus, although Einstein made a real breakthrough in physics and utterly changed
our view of space and time by “propounding a new chronogeometry” [4], it seems
fair to say that group theory played a very minor role in his work and his lines of
thought.

More mathematically inclined people thought otherwise. We have already men-
tioned Poincaré’s and Minkowski’s works. Klein (1910) [14] observes: “One could
replace ‘theory of invariants relative to a group of transformations’ by the words ‘rela-
tivity theory with respect to a group’.” For him, Galilean relativity or special relativity
were clearly in the straight line of his Program.

4 General relativity. . . and gauge theories

General relativity is an emblematic case illustrating Klein’s program in a differential
geometric context. There, following Einstein’s vision, one postulates the invariance
of the equations of the gravitational field under general coordinate transformations.
And by a sort of reverse engineering, one looks for equations knowing the invari-
ance group. This is what was achieved by Einstein and by Hilbert (1915), with the
celebrated equation

R�� � 1
2
R g�� D �T�� ; (12.1)

with R�� the Ricci tensor, R D R�� its curvature, T�� the energy-momentum tensor,
and � D 8�G

c4 whereG is Newton’s gravitational constant. Recall that Hilbert derived
this equation from the invariant action

S D
Z �

1

2�
RC LM

�p�g d4x ; (12.2)

with LM describing the invariant coupling of gravity to matter, and T�� D
@.LM

p�g/=@g�� . I shall not dwell more on that subject; it is also treated in Chapter
11 of this volume [16].

3This is the only occurrence of the word “Gruppe” in his paper.
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Let me rather make a big leap forward in time, and observe that a similar approach
was taken in the construction of non-abelian gauge theories. The gauge invariance
of electrodynamics had been observed by Weyl (1918) and reformulated later by him
into what we now call U(1) gauge invariance [31, 33]. Looking for a generalization to
non abelian groups G, i.e. postulating invariance under a certain infinite-dimensional
group of local, space-time dependent transformations, Yang and Mills (1954) [40]
were led to an (essentially) unique solution, with Lagrangian density

L D 1

2g2
trF��F

�� ; F�� D @�A� � @�A� � ŒA�; A� � ; (12.3)

with the gauge field A� and its field strength tensor F�� (a connection and its curva-
ture on a fiber bundle) taking values in the Lie algebra of G or one of its represen-
tations. Here and below, @� stands for @

@x� . L is invariant under local infinitesimal
changes ıA�.x/ D D�ı˛.x/, with D� D @� � ŒA�; �� the covariant derivative, and
ı˛ 2 LieG. A term Lm may then be added to L to describe the gauge invariant
coupling to matter. This now famous and ubiquitous Yang–Mills theory is the corner-
stone of the Standard Model of particle physics, see below.

To summarize, here are two cases (Einstein–Hilbert, Yang–Mills) in which invari-
ances and geometry of space (either real space-time or “internal” space) constrain the
dynamics.4 According to Yang’s motto [39], “symmetry dictates interaction.”

5 Emmy Noether: invariances and conservation laws

Noether’s celebrated paper (1918) [18], presented on the occasion of Klein’s aca-
demic Jubilee, contains two theorems on group invariance in variational problems.
I give a sketch of her results, using modern terminology and notation, and I refer to
[15] for a translation of her original article and a detailed and critical reading, see also
[13].

Consider a field theory described by an action principle in a, say, 4-dimensional
space-time with coordinates x D .Ex; t � x0/

S D
Z

L.x I �i .x/; @�i.x/; : : :/d4x

with S the action and L the Lagrangian density, a local function of a collection of
fields f�i g and of finitely many of their derivatives. Assume the invariance of L d4x
(and hence of S ) under a Lie group of coordinate and field variations x 7! x0; � 7!
�0. Then Noether’s first theorem asserts:

4“Constrain” does not mean fix uniquely: any smooth function f .R/ of curvature in (12.2) gives a diffeo-
morphism invariant Lagrangian, and likewise, higher order gauge invariant terms could be added to (12.3). Thus
in both GR and gauge theories, we need a principle of minimality to write the actions (12.2) or (12.3).
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Theorem 5.1 (Noether). An n-dimensional Lie group of invariance of L d4x implies
the existence of n independent divergenceless currents

j�s D .j 0s .Ex; t/; Ejs.Ex; t// ; i:e: @�j
�
s �

@

@t
j 0s � div Ejs D 0 ; s D 1; : : : ; n ;

from which, by Stokes theorem, n independent conservation laws follow

d

dt
Qs WD d

dt

Z
d3x j 0s .Ex; t/ D

Z
d3x div Ejs.Ex; t/ D 0:

(The currents are assumed to vanish fast enough at spatial infinity to justify the last
step.) Suppose that L depends only on � and its first derivatives @�. Write coordinate
and field infinitesimal variations as ıx� D X

�
s .x; �/ıa

s and ı�i D Zis.x; �/ıa
s ,

where as; s D 1; : : : n, are parameters in the Lie algebra, and Einstein’s convention
of summation over repeated indices is used. Then one finds

j�s D �
@L
@@��i

.Zis � @��iX�s / � X�s L

@�j
�
s ıas D

X
i

‰i ı�
i where ‰i WD ıL

ı�i
WD @L

@�i
� @� @L

@@��i

D 0 by Euler–Lagrange equations :

(12.4)

In Noether’s paper, the converse property, namely that conservation laws imply in-
variance, is also derived. This first theorem was subsequently generalized by Bessel–
Hagen (1921) to the case where L d4x is invariant up to a total divergence
ıas @�k

�
s d

4x, in which case j�s is just modified by the additional term k
�
s .

As an example, consider a theory involving a complex scalar field � with La-
grangian L D @��

�@�� � V.���/, V some arbitrary polynomial potential. The
Lagrangian is invariant under the group U(1) of transformations �.x/ ! ei˛�.x/,
leading to a conserved Noether current j�.x/ D i.��.x/@��.x/� .@��.x//��.x//.
The associated conserved U(1) charge may be thought of as an electric (or baryonic
or leptonic, etc.) charge.

Thus Noether’s first theorem establishes a link between invariances under contin-
uous transformations and conservation laws. This was not a new result in physics.
There had been early precursors: Lagrange (1811), Hamilton (1834), Jacobi (1837)
had uncovered the fundamental conservation laws of energy, momentum and angular
momentum in classical mechanics, but did not make a systematic connection with
geometric invariances. This had been elaborated by Schütz (1897) and by other pre-
cursors of Noether: Hamel (1904) who introduced the calculus of variations in that
context, Herglotz (1911), Engel (1916) and Kneser (1917) who applied it to the 10
conservation laws due to Galilean and to relativistic invariance, see [13, 15]. But
E. Noether was the first to give a general and systematic derivation of conservation
laws, starting from invariance of an action principle under Lie algebraic transforma-
tions.
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This important result of Noether had a curious fate. After an initial applause
by Klein, Hilbert and others, and some generalization by Bessel–Hagen, came a long
freeze. This was caused mainly by the rise of quantum mechanics, which made no use
of the Lagrangian formalism. Thus Noether’s theorem was essentially forgotten until
the early 1950s, when covariant Quantum Field Theory (QFT) developed, causing
a revival of interest in the Lagrangian formalism, and Noether’s theorem became
important again.

In modern QFT, her theorem appears in particular in the guise of Ward–Takahashi
identities satisfied by the vacuum expectation values of “time-ordered products of
fields” – T-products, in short – which are the relevant Green functions. In the lat-
ter, the field operators are ordered from right to left according to increasing time,
T�1.y1/ � � ��n.yn/ WD ��1

.y�1
/ � � ���n

.y�n
/, with � a permutation of f1; � � � ; ng

such that y0�1
� y0�2

� � � � � y0�n
. Take an “internal” symmetry (X�s D 0 in

the above notation), consider its Noether currents j�s and the divergence of its time-
ordered product with fields hTj�s .x/�1.y1/ � � ��n.yn/i. In addition to the explicit
divergence which vanishes because of the current conservation, @�j

�
s D 0, there is

a contribution coming from the implicit Heaviside functions 	.˙.x0 � y0ip// in the
T-product. Then one finds

@

@x�
hTj�s .x/�1.y1/ � � ��n.yn/i

D
nX
iD1

ı.x0 � y0i / hT�1.y1/ � � � Œj 0s .x/; �i.yi/� � � � i
(12.5)

and the equal time commutator on the r.h.s. is the density of the infinitesimal variation
of the field �j : Œj 0s .x/; �i.yi/�x0Dy0

i
D Zis.x; �i/ı

3.Ex � Eyi /. These identities lead
to very useful relations between different T-products.

In the case the symmetry is not exact but is “softly broken” and one has a partial
conservation of the current @�j

�
s .x/ D �.x/, with � an explicitly known field, the

content of the suitably modified identity (12.5) is not void but leads to relations be-
tween amplitudes that have been explored in great detail, in particular in the context
of weak interactions.

These identities and their various avatars – in particular the Slavnov–Taylor and
BRST (Becchi–Rouet–Stora–Tyutin) identities in the framework of gauge theories
– play a crucial role at several steps of the study of quantum field theories. They
enable one to establish that the renormalization procedure does not jeopardize the
symmetries of the original theory; they allow one to prove that conserved currents
“do not renormalize” and do not develop anomalous dimensions, thus justifying the
notion of universality in “current-current” interactions, see below; they are also used
in the derivation of “low energy theorems”, see in particular [30].

For completeness, let us mention briefly Noether’s second theorem: for an “infi-
nite-dimensional group” of invariance (such as diffeomorphisms in General relativity,
or gauge transformations in gauge theories), invariance within a variational principle
implies the existence of constraints between the ‰i D ıL=ı�i , i.e. identities satis-
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fied independently of the Euler–Lagrange equations of motion. Examples are pro-
vided by the contracted Bianchi identities in general relativity, D�G�� D 0, where
G�� D R�� � 1

2
g��R, or their analogue D�D�F�� D 0 in gauge theories. Note

that, although they are satisfied irrespective of the Euler–Lagrange equations, (12.1)
or 1

g2D
�F�� D J� WD @Lm=@A

� respectively, these identities ensure the consis-
tency of the latter, whose right hand sides are covariantly conserved, D�T�� D 0,
resp. D�J� D 0.

6 Invariances in quantum mechanics

With the triumph of quantum mechanics, a new paradigm appears in the study of
symmetries in physical systems. Through the fundamental papers and books of von
Neumann and Wigner, Weyl and van der Waerden [29, 32, 35, 28] at the end of the
1920s, representation theory enters Physics. This is particularly well summarized
in Wigner’s theorem. With any quantum system is associated a Hilbert space H.
States of the system are described by vectors ‰, or more precisely by rays, of H and
“observables” A are self-adjoint operators on H. Then Wigner’s theorem [32, 35]
asserts the following:

Theorem 6.1 (Wigner). Transformations of a quantum system under a group G are
implemented as ‰ ! U‰, A! UAU�1 with U unitary or anti-unitary and unique
up to a phase, satisfying

g; g0 2 G U.g/U.g0/ D U.g:g0/ei!.g;g 0/ :

Thus U.g/ gives a projective (up to a phase) representation of G.

By “anti-unitary”, we mean a unitary antilinear operator, a situation which is en-
countered in the study of the time reversal operator T . Note that the projective nature
of the representations is forced upon us by the structure of quantum mechanics: rays
rather than vectors are the relevant objects.

Among such transformations, invariances are associated with group actions that
commute with the dynamics, i.e. with the Hamiltonian

ŒH;U.g/� D 0 : (12.6)

But according to Ehrenfest’s theorem, the time derivative of any operator (with no
explicit time dependence) is given by its commutator with H , i„ dA=dt D ŒH;A�.
Thus (12.6) tells us that any U.g/, or any infinitesimal generator of the group ac-
tion, is conserved: here again, invariances manifest themselves by the existence of
conserved quantities. The new feature due to quantum mechanics is that not all con-
served quantities are simultaneously observable. If one picks H and a set of com-
muting operators U.h/ – h in a Cartan torus of G if G is a Lie group – eigenstates of
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those U.h/ have conserved eigenvalues, which are, in the physicists’ jargon, “good
quantum numbers”.

For example, consideration of the group of rotations SO(3) shows that its infinites-
imal generators (i.e. elements of its Lie algebra) are proportional to the components of
the angular momentum EJ . The latter is thus quantized by the theory of representations
of SO(3). If the system under study is invariant under rotations, one has conserva-
tion of EJ 2 (the Casimir operator) and of one component, say Jz: their eigenvalues
j.j C 1/„2 and m„ are “good quantum numbers”, conserved in the time evolution.
States of the system are classified by representations of SO(3) or SU(2), the latter
appearing because it gives the projective (up to a sign) representations of the former,
through half-integer spin representations.

As a side remark, we also notice that the distinction between discrete and contin-
uous invariances, that was crucial in classical physics, with only the latter leading to
conservation laws, fades away. Conservation of parity – to the extent it is conserved
– is expressed by the commutation relation ŒP;H� D 0 and implies that the parity of
a state is a good quantum number.

This beautiful framework was first applied to the rotation group and its finite sub-
groups, in conjunction with parity and the symmetric group of permutations. The
latter appears in connection with the Pauli principle and the Fermi–Dirac or Bose–
Einstein quantum statistics. This resulted in innumerable applications to atomic,
molecular and solid state physics: atomic and molecular orbitals, the fine structure
of spectral lines of atoms and their splitting in a magnetic or electric field (respec-
tively the Zeeman and the Stark effects), the crystal-field splitting and many other
effects were analyzed by group-theoretic methods; selection rules in transitions were
shown to be governed by tensor products of representations, etc. See for example
[27] for a review, and [23] for an overall presentation of the work of the first actors –
Wigner and von Neumann, Heitler and London, Weyl. Early applications to particle
physics were exploiting rotation, parity and Lorentz invariance in scattering theory.
In the latter context, let us cite Wigner’s fundamental work on the representations of
the Poincaré group [37]. For a one-particle state, these representations are fully char-
acterized by two real numbers, which describe the mass and the spin of the particle.
But more group theory was soon to come in particle physics and we devote the next
section to these new symmetries.

As it is often the case when a new theoretical corpus develops, requiring the learn-
ing and the practice of an abstract formalism, not everybody accepted happily this
irruption of group theory into physics and there was a certain resistance among some
physicists. Some even talked about “the group pest”!. . . , see [38], [28] p. 165, [23],
or the prefaces of [32, 25]. In his preface to the 1959 edition of his book [35], Wigner
observes: “It pleases the author that this reluctance [among physicists toward accept-
ing group-theoretical arguments] has virtually vanished in the meantime and that, in
fact, the younger generation does not understand the causes and the basis for this
reluctance.”
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7 Invariances in particle physics

We have seen above that Noether’s reciprocal statement enables one to infer the ex-
istence of a symmetry group from conserved quantities. This observation has been
beautifully illustrated by the discovery of “flavor groups” in particle physics.

Heisenberg (1932) observing the many similarities of mass and interactions of
the two constituents of the nucleus, the nucleons, namely the neutron n and the pro-
ton p, their electric charge notwithstanding, proposed that they form a 2-dimensional
representation of a new SU(2) group of “isotopic spin”, or “isospin” in short. This
was an extremely fruitful idea, soon confirmed by the discovery (1947) of the �
mesons, or pions, coming in three states of charge .�C; �0; ��/, and hence forming
a 3-dimensional representation of this SU(2) group. Isospin symmetry then predicts
relations between scattering amplitudes of nucleons and pions that were well verified
in experiments. Later, more instances came with the kaons .KC; K0/, the � reso-
nance .�CC; �C; �0; ��/ and others, which form representations of isospin 1=2,
3=2 . . . respectively. This SU(2) group is a symmetry of hadrons (i.e. of strongly
interacting particles), broken by electromagnetic interactions.

In the sixties, the story repeated itself. In view of the newly discovered “strange”
particles, Gell-Mann and Ne’eman (1961) proposed the existence of an SU(3) group
of (approximate) symmetry of strong interactions. This “flavor SU(3)” group encom-
passes the previous isospin group SU(2). The argument leading to SU(3) was that
there was experimental evidence of the existence of two independent conserved quan-
tities (isospin and hypercharge or strangeness), hence the group should be of rank 2.
Also there were several observed “octets” (8-dimensional representations) of parti-
cles of similar masses and same quantum numbers (baryonic charge, spin, parity),
and this pointed to the group SU(3) which has an 8-dimensional irreducible represen-
tation, namely its adjoint representation. This hypothesis was confirmed soon after
by the experimental discovery of a particle 
 completing a 10-dimensional repre-
sentation, whose mass and quantum numbers had been predicted, and by some other
experimental evidence [8]. Associated with the fundamental 3-dimensional represen-
tation of SU(3) is a triplet of “quarks”, .u; d; s/ (for up, down and strange), which
according to the confinement hypothesis, should not appear as observable particles
in normal circumstances.5 This Gell-Mann–Ne’eman SU(3) group has been dubbed
“flavor” to distinguish it from another “color” SU(3) that appears as the gauge group
of “quantum chromodynamics” (QCD), the modern theory of strong interactions. To
conclude this discussion, let us stress that the flavor SU(3) group of (approximate)
symmetry was more than welcome, in order to put some order and structure in the
“zoo” of particles that started to proliferate at the end of the fifties.

This line of thought has proved extremely fruitful, and modern particle physics
has seen a blossoming of discoveries structured by the concepts of symmetries and

5By “normal circumstances” we mean discarding the extreme conditions of the primordial Universe, im-
mediately after the Big Bang, or of the high-energy heavy ion collisions in the laboratory, where a plasma of
unconfined quarks may be created.
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group theory. The previous SU(2) and SU(3) groups have been extended to larger
flavor groups, in connection with the discovery of new families of particles, with new
quantum numbers, revealing the existence of more species (or “families”) of quarks.

The role of symmetries is not limited to strong interactions and the other sub-
atomic forces – electromagnetic and weak – are also subject to symmetry require-
ments. This was hardly apparent in the early Fermi “current-current” theory of the
weak interactions, LF D �GFp

2
J �J�, but then the V-A pattern à la Gell-Mann–

Feynman of the current J D V � A, the role of the conservation or partial con-
servation of currents V and A, the Cabibbo angle, etc. were gradually uncovered,
see [20, 10] for reviews of these historical developments. This role of symmetries
is even more manifest today in the Glashow–Salam–Weinberg model of electroweak
interactions, see below.

To look for a group invariance whenever a new pattern is observed has become
a second nature for particle physicists.

8 The many implementations of symmetries
in the quantum world

When discussing symmetries in contemporary physics, it is common to distinguish
space-time symmetries, discrete or continuous, – rotations and Lorentz transforma-
tions, translations, space or time reflections, . . . – from “internal” symmetries that act
on internal degrees of freedom – charge, isospin, etc. While this distinction may be
useful, it should not hide the tight interlacing of these two species of symmetries. For
instance, one of the fundamental results in QFT is the CPT theorem (Lüders, Pauli
and Bell) which asserts that the product of the charge conjugation C by the space
reflection or parity P and time reversal T should be an absolute and uninfringed
symmetry of Nature. This is established based on fundamental properties like local-
ity and Lorentz invariance that one expects from any decent theory [26].6

Another distinction between two big classes of symmetries deals with their “glo-
bal” or “local” character. The isospin SU(2) or the flavor SU(3) symmetries men-
tioned above are global symmetries, in the sense that the group element describing
the transformation is independent of the space-time point where it applies. In con-
trast, the diffeomorphisms of GR or the gauge transformations of electrodynamics or
Yang–Mills theory are local, with the group (or in infinitesimal form, the Lie algebra)
element varying from point to point. As we have seen, that distinction was already
clearly perceived by Klein and Noether.

6As pointed out by Yang [39], there is a very intriguing sentence in Weyl’s preface to the second edition
of his book [32], which seems to indicate that as early as 1930, he foresaw some relation between these three
transformations.
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It turns out that a quantum symmetry may be realized in a multiplicity of ways,
namely

� as an exact symmetry, e.g. in the global U(1) symmetries associated with
charge or baryonic number conservation, or in the local gauge invariances of
quantum electrodynamics and of quantum chromodynamics (QED, QCD). In
the latter, the gauge group is SU(3), and all particles –like quarks and gluons–
carrying “color”, i.e. a non trivial representation of that SU(3), are confined;

� as an explicitly broken symmetry: this is the case with isospin SU(2) broken
by electromagnetism, or flavor SU(3), which is an approximate symmetry, bro-
ken by the strong interactions themselves. This is also the case with parity, the
space reflection P mentioned above, which is explicitly broken by weak inter-
actions, as discovered by Lee and Yang (1956) and as now implemented in the
Standard Model;

� as a spontaneously broken symmetry. This refers to the following situation: in
a physical system a priori endowed with a certain symmetry, the state of min-
imum energy, called the ground state or the vacuum depending on the context,
may in fact be non invariant. This is a very common and fundamental phe-
nomenon, which is familiar from the case of ferromagnetism: in a ferromagnet
in its low-temperature phase, the magnetic moments of the individual atoms,
although subject to a rotation invariant interaction, pick collectively a direction
in which they align on average, thus giving rise to a macroscopic magnetization
that breaks the rotation invariance of the whole system. This is accompanied, if
the broken symmetry is continuous, by the appearance of massless excitations
or particles, associated with the possibility of continuously rotating the ground
state at a vanishing cost in energy. These excitations are the Nambu–Goldstone
particles. In the variant in which the symmetry is only approximate, and in the
neighbourhood of a spontaneously broken phase, one expects the would-be
Nambu–Goldstone bosons to be not strictly massless but of low mass;

� as a spontaneously broken gauge theory: a global symmetry is spontaneously
broken but the resulting theory maintains an exact gauge invariance. Then, and
this is the essence of the Brout–Englert–Higgs (BEH) mechanism, the Nambu–
Goldstone excitations do not appear as real particles, and instead give rise to
additional polarization states of some vector fields and to masses of the corre-
sponding particles. This is a crucial step in the edification of the electro-weak
sector of the Standard Model, and the successive discoveries at CERN of mas-
sive vector particles (the W ˙ and Z0) and lately, of a likely candidate for the
remaining massive scalar boson, have corroborated this model;

� anomalously, which means through a breaking of a classical symmetry by
quantum effects. Examples are provided by the realization of some chiral sym-
metries of fermions, which act separately on the left-handed and right-handed
components of these particles. Conversely, in the Standard Model of particle
physics, where the assignments of representations are different for different
chiralities, it is essential that anomalies cancel, see below;
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� with supersymmetry: that ordinary Lie groups and algebras could be extended
to accommodate anticommuting (Grassmannian) elements has been known and
well studied since the seventies. To this date we have not seen any direct man-
ifestation of supersymmetry in the laboratory. But the idea has been so amaz-
ingly fruitful in establishing new results and new connections between different
fields that it will undoubtedly remain in the physicist’s toolbox;

� as quantum symmetries, or “quantum groups”, a misnomer for “quantum” de-
formations of Lie algebras or, more generally, for Hopf algebras. These have
not yet manifested themselves in the context of particle physics, but are deter-
minant in the discussion of quantum integrable models and in their applications
to many systems of condensed matter physics in low dimension;

. . . and this list is certainly non exhaustive.
It is truly remarkable that Nature makes use of all these possible implementations

of symmetries.
Let us illustrate these various possibilities on a few examples coming from modern

physics. Our presentation will be extremely sketchy, as each topic would deserve
a separate monograph.

Example 1 “Linear/non linear sigma models” may be regarded as Klein’s most
direct heirs in the context of QFT. In the simplest possible case, consider a field �
defined on R

d and taking its values in R
n or in Sn�1 and write a Lagrangian in the

form

L D 1

2
.@�; @�/ � V..�; �//

where . ; / denotes the O(n) invariant bilinear form. The invariance group of that La-
grangian is obviously O(n), and the field � transforms according to a linear represen-
tation or to a non-linear realization, depending on the case Rn resp. Sn�1. According
to Noether’s (first) theorem, there are 1

2
n.n � 1/ independent conserved quantities

at the classical level. Using the corresponding Ward identities (12.5), one verifies
that the symmetry is preserved by quantum corrections. This was first set up by
Gell-Mann and Lévy (1960) in the case n D 4, in their investigation of the partial
conservation of the “axial current” in weak interactions [7], and involved the fields of
pion particles �˙; �0 and of a hypothetical � , whence the name given to the model;
this original model had thus a (softly and spontaneously broken) O(4) symmetry.

This may be generalized to a field � taking its values inM, a Riemannian manifold
with isometries. Now in any of these sigma models, the natural questions to ask are
� how is the symmetry realized, as an exact, explicitly broken, or spontaneously

broken symmetry?

� how is the symmetry preserved by renormalization? This is where use has to
be made of Noether currents and Ward identities;

� what are the physical consequences: are there Goldstone particles, or “almost
Goldstone” particles (like the pion of low mass)? is there a dynamical genera-
tion of mass? is the theory scale or conformally invariant? and so on, and so
forth.
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Sigma models have been extensively used with all kinds of manifolds and groups
in particle physics and cosmology, in statistical mechanics and solid state physics.
For example they appear as effective low-energy theories for various phenomena in
condensed matter, describing membranes, surface excitations, order parameters, etc.
but also in string theory – again in a low energy limit –, based on ordinary manifolds
or generalized geometries à la Hitchin. The study of non compact and/or supersym-
metric sigma models is currently a very active subject, for its applications running
from condensed matter to string theory.

These sigma models also constitute a mine of mathematical problems. For in-
stance, particular cases with V D 0 are studied for their own sake, in Riemannian
geometry, under the name “harmonic maps”.

Example 2 The Standard Model of particle physics has a symmetry group
SU(3)�SU(2)�U(1), with three gauge groups realized in a completely different way.

The SU(3) color (gauge) symmetry of QCD is an exact invariance, and this is be-
lieved to be of crucial importance for quark confinement. On the other hand, SU(2)�
U(1), the gauge group of weak isospin and weak hypercharge, is spontaneously bro-
ken down to an exact U(1), the gauge symmetry of ordinary electrodynamics. As
mentioned above, a relique of the BEH mechanism at work in this spontaneous break-
ing should be a spin 0 boson, a good candidate of which has just been observed at
CERN.

The absence of anomalies in the Standard Model, crucial for the consistency of the
theory, relies on a remarkable matching between families of leptons and of quarks:
for both types of particles, three “generations” are known at this time

.e; �e/; .; ��/; .�; �/ ! .u; d/; .c; s/; .t; b/ ;

and anomalies cancel within each generation [1].
On top of the gauge pattern, there are other SU(2) and SU(3) groups at work: the

flavor SU(2)	 SU(3) broken symmetries discussed above. In another vein, a scenario
which has been contemplated – and in fact studied in great detail – but does not yet
seem to be borne out by experiments is that this Standard Model is in fact a subsector
of a larger supersymmetric extension.

Example 3 Quantum integrable systems and Quantum Groups. Consider the spin
1
2

XXZ quantum chain: this is a quantum system of N spins ESi whose interactions
are described by the Hamiltonian

H D
NX
iD1

Sxi S
x
iC1 C Syi SyiC1 C�Szi SziC1 C boundary terms

acting in .C2/˝N . Here, � is an anisotropy parameter in spin space. It was first
introduced for � D 1 by Heisenberg (1928) as a model of ferromagnetism. This
is known to be a quantum integrable system after important contributions by Bethe,
Lieb and Sutherland, Yang and Yang, Gaudin, Baxter, Faddeev and many others.
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For � D 1, (and no boundary term), it exhibits SU(2)-invariance. For � ¤ 1,
j�j < 1, it has a deformed symmetry Uqsl.2/ (“quantum SU(2)”), where q D ei˛ ,

� D cos˛ [21], or an affine quantum Uqbsl.2/ [12], depending on the boundary
conditions. Recent progress on the computation of correlation functions of the XXZ
chain and on its connections with problems of combinatorics have been made possible
by representation-theoretic considerations.

Other recent advances in the context of integrable gauge theories and the AdS/CFT
correspondence also rely to a large extent on representation theory of quantum alge-
bras.

Example 4 Conformal invariance. The last fifteen years of the previous century
have witnessed rapid progress in our understanding of quantum field theories in low
dimension. In 2 d, conformal invariant field theories (CFTs) have experienced a spec-
tacular development, with a huge number of exact results and applications to critical
phenomena and to string theories, thus writing a new chapter of non-perturbative
quantum field theory. For the largest part, this progress was made possible by ad-
vances at the end of the seventies in the representation theory of infinite-dimensional
Lie algebras – Virasoro, affine Lie algebras and their cousins – that are the relevant
symmetries of CFTs. For a review, see for example [5]. There, one sees once again
the close ties between symmetries, group theory and their physical implications.

9 Conclusions

We have seen that symmetry and group theory play an essential role in modern
physics. Their role is:
� to dictate the possible form of interactions on geometrical grounds: the cases

of general relativity or of gauge theories are exemplary in that respect; but one
may also quote non-linear sigma-models, in which the form of the Lagrangian
is prescribed by the geometry of the manifold and the isometries play a key
role;

� to predict: more invariance means less independence, implying relations be-
tween different phenomena, selection rules, a priori determination of multi-
plicities, etc., as illustrated by scores of examples in atomic, molecular, solid
state and particle physics; and to organize a wealth of data, of particles, of
phenomena: we have seen that representation theory is instrumental in this
undertaking;

� to protect in the quantization (and renormalization). Once again, take the ex-
ample of a gauge theory. Were its symmetries broken by quantum effects (ul-
traviolet divergences, anomalies), the theory would lose most of its predictive
power or even become inconsistent. So we have a self-consistent picture, where
symmetry implies constraints (in the form of Ward identities), that in turn guar-
antee that symmetry is preserved by quantization. This scheme is implemented
recursively in the perturbative construction of gauge theories.
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The study of groups and of representation theory is now part of the education
of a modern physicist. Some domains of representation theory – of superalgebras,
of quantum groups and of infinite-dimensional algebras – have developed recently
thanks to the incentive of physical applications.

Could a unified theory based on geometry and embracing all fundamental inter-
actions including gravitation be constructed? That was Einstein’s dream, this is still
regarded today as the Holy Grail by many people, string theorists among others.

We have emphasized the many possible implementations of symmetries in (quan-
tum) physics. We have also stressed that not only the nature of the symmetry group
but also the scheme of its breaking, and the residual subgroup of symmetry, are de-
terminant. In that respect, we are still living in the legacy of Klein and Curie. . .
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Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France
email: frances@math.unistra.fr

Hubert Goenner Institute for Theoretical Physics, University of Göttingen, Fried-
rich-Hund-Platz 1, 37077 Göttingen, Germany
email: goenner@theorie.physik.uni-goettingen.de

Jeremy J. Gray The Open University, London, UK
email: j.j.gray@open.ac.uk

Lizhen Ji Department of Mathematics, University of Michigan, 530 Church Street,
Ann Arbor, MI 48109-1043 USA
email: lji@umich.edu

Catherine Meusburger Department Mathematik, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany
email: catherine.meusburger@math.uni-erlangen.de

Athanase Papadopoulos Institut de Recherche Mathématique Avancée, Université
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Plücker coordinates, 256
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